目录
- 对象的分类
- object_getClass和class方法
- isa流程和继承链分析
- isa流程实例验证
- 类的继承链实例验证
- 类的结构
- cache_t结构
- bits分析
- 实例验证
- 属性properties
- 方法methods
- 协议protocols
- ro
- 类方法
- 类结构流程图解
对象的分类
OC中的对象主要可以分为3种:实例对象(instance)、类对象(class)和元类对象(meta-class)
实例对象
通过类alloc出来的对象,每次调用alloc都会产生新的instance对象
NSObject* obj1 = [[NSObject alloc] init];
NSObject* obj2 = [[NSObject alloc] init];
NSLog(@"%p %p", obj1, obj2);
// 打印结果:0x600000180040 0x600000180050
从运行结果可看出以上是不同的两个实例对象,分别占据着两块不同的内存
实例对象在内存中存储的信息包括:isa指针、其他成员变量
类对象
#import <objc/runtime.h>
Class objectClass1 = [obj1 class];
Class objectClass2 = [obj2 class];
Class objectClass3 = [NSObject class];
Class objectClass4 = object_getClass(obj1); //Runtime API
Class objectClass5 = object_getClass(obj2); //Runtime API
// 打印结果:0x1d6fc6070 0x1d6fc6070 0x1d6fc6070 0x1d6fc6070 0x1d6fc6070
以上都是NSObject的类对象,从运行结果可看出它们都是同一个对象,即这些指针指向的是同一块内存,每个类在内存中有且只有一个class对象
类对象在内存中存储的信息主要包括:isa指针、superclass指针、类的属性信息(@property)、类的对象方法信息(instance method)、类的协议信息(protocol)、类的成员变量(ivar,类型、名称等描述信息而不是具体的值)
元类对象
看下面如何获取元类对象(元类对象类型仍是一个类对象,底层都是struct objc_class* Class,只是包含的信息不一样)
Class objectMetaClass = object_getClass(object_getClass(obj1));
将类对象作为参数传入,再次调用object_getClass函数
那如果调用两次class方法呢?
Class objectMetaClass2 = [[NSObject class] class];
NSLog(@"%p %p %d", objectMetaClass, objectMetaClass2, class_isMetaClass(objectMetaClass));
// 打印结果:0x1d6fc6020 0x1d6fc6070 1 0
从打印结果可以看出,class不管调多少次返回的一直是类对象,不会是元类对象
每个类只有一个元类对象,元类对象在内存中存储的信息主要包括:isa指针、superclass指针以及类方法信息
object_getClass和class方法
查看objc4源码
object_getClass方法中传入各种对象,通过访问isa,返回不同的类对象:
Class object_getClass(id obj)
{if (obj) return obj->getIsa();else return Nil;
}// 传入类名字符串,返回对象的类对象
Class objc_getClass(const char *aClassName)
{if (!aClassName) return Nil;// NO unconnected, YES class handlerreturn look_up_class(aClassName, NO, YES);
}
class方法直接返回类对象:
//+ (id)self {
// return (id)self;
//}
//- (id)self {
// return self;
//}+ (Class)class {return self;
}- (Class)class {return object_getClass(self);
}//+ (Class)superclass {
// return self->getSuperclass();
//}
//- (Class)superclass {
// return [self class]->getSuperclass();
//}
isa流程和继承链分析
上面我们了解了对象的分类,认识到不同类型对象的差别,那么是什么让这些不同类型的对象联系起来从而构成OC对象体系的呢?
上经典老图:

isa指向链
实际上就是isa指针将它们联系起来形成 isa指向链:
- 实例对象
instance的isa指向类class - 类对象
class也有isa指向的是元类meta - 元类
meta中也有isa指向的是根元类root meta

当调用对象方法时,通过实例对象的isa找到class,最后找到对象方法的实现进行调用
当调用类方法时,通过类对象的isa找到meta-class,最后找到类方法的实现进行调用
类继承链
根据superclass的指向,也可总结出OC类的继承链:
- 子类继承于父类,父类继承于根类,根类指向的是
nil - 在元类中也存在继承,子类的元类继承于父类的元类,父类的元类继承于根元类,根元类又继承与根类

当Student的实例对象要调用Person的对象方法时,会先通过isa找到Student的class,然后通过superclass找到Person的class,最后找到对象方法的实现进行调用
类似地,当Student的类对象要调用Person的类方法时,会先通过isa找到Student的meta-class,然后通过superclass找到Person的meta-class,最后找到类方法的实现进行调用
isa流程实例验证
Person类继承于NSObject,Student类继承于Person
@interface Person : NSObject {@publicint _age;
}- (void)personInstanceMethod;
+ (void)personClassMethod;@end@interface Student : Person {@publicint _no;
}- (void)studentInstanceMethod;
+ (void)studentClassMethod;@end
打断点,通过LLDB查看isa关联类的地址:
// 打印出实例的地址
Person* person = [Person alloc];
NSLog(@"%@", person);
Student* student = [Student alloc];
NSLog(@"%@", student);
类对象的地址和实例对象
isa所指向的地址有所出入,isa需要进行一次位运算,才能计算出类对象的真实地址
在获取到对象的isa值后,可以通过&(按位与)一个掩码ISA_MASK 0x007ffffffffffff8ULL来获取到对象关联的类地址:
根据student实例的isa地址找到关联类Student的地址0x00000001000082d8

同样地,根据Student类对象的isa找到Student元类的地址0x00000001000082b0

根据Student元类对象的isa找到关联类的地址0x00000001d6fc6020

找到NSObject类对象的isa关联类地址0x00000001d6fc6020,与Student元类对象的isa关联类地址一致,可以验证元类的isa指向根元类,且根元类的isa指向自己

类的继承链实例验证
Class tClass = [Student class];
Class pClass = class_getSuperclass(tClass);
Class nClass = class_getSuperclass(pClass);
Class rClass = class_getSuperclass(nClass);
NSLog(@"\n tClass-%@ \n pClass-%@ \n nClass-%@ \n rClass-%@ \n", tClass, pClass, nClass, rClass);

可看出类对象的继承链:Student->Person->NSObject->nil
Student * student = [Student alloc];
Class tClass = object_getClass(student);
Class mtClass = object_getClass(tClass);
Class mtSuperClass = class_getSuperclass(mtClass);
NSLog(@"\n student %p 实例对象 -- %p 类 -- %p 元类 -- %p 元类父类", student, tClass, mtClass, mtSuperClass);
Person * person = [Person alloc];
Class pClass = object_getClass(person);
Class mpClass = object_getClass(pClass);
Class mpSuperClass = class_getSuperclass(mpClass);
NSLog(@"\n person %p 实例对象 -- %p 类 -- %p 元类 -- %p 元类父类", person, pClass, mpClass, mpSuperClass);
NSObject * obj = [NSObject alloc];
Class objClass = object_getClass(obj);
Class mobjClass = object_getClass(objClass);
Class mobjSuperClass = class_getSuperclass(mobjClass);
NSLog(@"\n NSObject %p 实例对象 -- %p 类 -- %p 元类 -- %p 元类父类 == %p NSObject类对象", obj, objClass, mobjClass, mobjSuperClass,
[NSObject class]);

可看出元类的继承链:Student Meta-class -> Person Meta-class -> NSObject Meta-class -> NSObject class -> nil
类的结构
前面我们了解到了Class的类型是struct objc_class*结构体指针类型,下面就来分析一下这个结构体的定义
struct objc_object {Class _Nonnull isa OBJC_ISA_AVAILABILITY;
};struct objc_class : objc_object {// Class ISA;Class superclass;cache_t cache; // formerly cache pointer and vtableclass_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags// ...其他代码,objc_class定义共计531行代码...
};
继承于objc_object说明:
- 还有一个继承过来的Class类型变量
isa superclass:指向父类的指针cache:缓存相关bits:用于获取具体的类信息
cache_t结构
cache_t是一个结构体
struct cache_t {
private:explicit_atomic<uintptr_t> _bucketsAndMaybeMask; // 8字节union {struct {explicit_atomic<mask_t> _maybeMask; // uint32_t 4字节
#if __LP64__uint16_t _flags; // 2字节
#endifuint16_t _occupied; // 2字节};explicit_atomic<preopt_cache_t *> _originalPreoptCache; // 8字节};};
// 此段为部分代码,cache_t定义总共有290行
分析整个cache_t的结构,发现cache_t的内存总共为16字节,后面会对其底层进行学习
bits分析
在objc_class里有一段源码是data操作
class_rw_t *data() const {return bits.data();
}
void setData(class_rw_t *newData) {bits.setData(newData);
}
data为class_rw_t类型,下面是其部分源码:

ro:成员变量、methods:方法、properties:属性、protocols协议
我们在类中定义的方法、属性等就是通过调取class_rw_t结构体中的方法获取的
实例验证
下面通过实例来验证一下类的结构是否如上面一致
创建Person类继承于NSObject,定义一些属性、方法以及协议:
@protocol PersonDelegate<NSObject>- (void)personDelegateMethod;
// 让Person类遵守并实现此协议方法
@end@interface Person : NSObject<PersonDelegate> {NSString* hobby;
}@property (nonatomic, strong)NSString* name;
@property (nonatomic, assign)NSInteger age;- (void)sayHello;
+ (void)sayWorld;@end
LLDB调试输出

第一个地址0x0000000100008470是类的第一个成员isa,第二个地址0x00000001d6fc6070是类的第二个成员superclass
isa和superclass都是结构体指针类型,占用8字节,cache结构体占用16字节,XYPerson的地址加上8 + 8 + 16 = 32就可以得到bits的地址

相加并强转为class_data_bits_t *类型得到bits的地址0x0000000100008270,再调用data()方法就得到类型为class_rw_t的地址
属性properties
调用class_rw_t的properties()方法,得到property_array_t类型的数组,继承于list_array_tt,找到list下的ptr

class property_array_t :public list_array_tt<property_t, property_list_t, RawPtr>
{typedef list_array_tt<property_t, property_list_t, RawPtr> Super;public:property_array_t() : Super() { }property_array_t(property_list_t *l) : Super(l) { }
};
ptr为property_list_t类型,继承于entsize_list_tt
struct property_list_t : entsize_list_tt<property_t, property_list_t, 0> {
};
entsize_list_tt部分源码:
struct entsize_list_tt {uint32_t entsizeAndFlags;uint32_t count; // 数量uint32_t entsize() const {return entsizeAndFlags & ~FlagMask;}uint32_t flags() const {return entsizeAndFlags & FlagMask;}Element& getOrEnd(uint32_t i) const {ASSERT(i <= count);return *PointerModifier::modify(*(List *)this, (Element *)((uint8_t *)this + sizeof(*this) + i*entsize()));}Element& get(uint32_t i) const { // 获取元素方法ASSERT(i < count);return getOrEnd(i);}// ...其他代码...
};
通过调用get()方法,获取元素,下面的结果就是Person类的name、age在properties()里,而实例变量hobby不在这里

方法methods
调用class_rw_t的methods()方法,得到method_array_t类型的数组,继承于list_array_tt,同样找到list下的ptr

这里看到ptr是method_list_t类型,同样继承于entsize_list_tt,其中有count为6,调用get()方法查看输出

这里的元素为method_t类型,method_t为结构体类型,其中的一个成员变量为big的结构体,里面是方法名称等信息:
struct method_t {method_t(const method_t &other) = delete;// The representation of a "big" method. This is the traditional// representation of three pointers storing the selector, types// and implementation.struct big {SEL name;const char *types;MethodListIMP imp;};
// ...其他代码
};
调用big方法查看输出

这6个方法分别是:
- 实例方法:
sayHello - 属性
name、age的set/get方法 C++析构函数:.cxx_destruct
且都是实例方法,并没有类方法sayWorld
协议protocols
调用class_rw_t的protocols()方法,得到protocol_array_t类型的数组,继承于list_array_tt,同样找到list下的ptr

这里protocol_list_t并没有继承于entsize_list_tt:
struct protocol_list_t {// count is pointer-sized by accident.uintptr_t count;protocol_ref_t list[0]; // variable-sizesize_t byteSize() const {return sizeof(*this) + count*sizeof(list[0]);}protocol_list_t *duplicate() const {return (protocol_list_t *)memdup(this, this->byteSize());}typedef protocol_ref_t* iterator;typedef const protocol_ref_t* const_iterator;const_iterator begin() const {return list;}iterator begin() {return list;}const_iterator end() const {return list + count;}iterator end() {return list + count;}
};
看到protocol_list_t的定义,我们知道count值为1,说明是有值,但是其成员是protocol_ref_t为uintptr_t类型,那怎么输出查看这个count中的1到底是什么呢

查看protocol_ref_t的定义,通过注释信息,我们可以看到protocol_ref_t未映射到protocol_t类型,那我们就找protocol_t的定义

这里看到protocol_t中有mangledName以及instanceMethods等,只要得到protocol_t就可以输出我们想要的名称方法等信息,怎么才能从protocol_ref_t映射到protocol_t呢,全局找一下吧

这里我们看到,protocol_ref_t是可以强转protocol_t的,那我们就试试:

强转成功,调用demangledName方法,我们就得到了LGPersonDelegate,那我们再找一下协议方法

按照method查看输出的步骤,成功找到协议方法personDelegateMethod
ro
调用class_rw_t的ro方法,得到class_ro_t的结构体


查看ivars,也是继承于entsize_list_tt的ivar_list_t类型的结构体,调用get方法查看:

这6个实例变量分别是自定义hobby以及系统自动帮我们自动生成的带有_的实例变量
类方法
methods中的方法全部都存在类中,都是实例方法,那么类方法应该去在元类中找

通过类的isa指针找到元类,再根据上面的步骤找到并输出这个元类的methods
这里我们不由地想,OC的底层是
C/C++实现的,不存在对象方法和类方法的区分,有的都是函数实现,在OC的设计中,一个类可以new出无数个对象,因此把方法存在类中,而不是动态创建的对象中,是合理的。
因为OC的对象方法和类方法的定义是-和+的区分,那么方法名称就会有重名的存在,因此才会引入元类的概念,元类的存在就是解决类方法重名的问题
类结构流程图解
类的结构流程图解析:


