您的位置:首页 > 汽车 > 新车 > 代理公司在线观看_现在比较流行的软件开发模型_专业seo优化推广_竞价网站

代理公司在线观看_现在比较流行的软件开发模型_专业seo优化推广_竞价网站

2025/6/10 5:39:33 来源:https://blog.csdn.net/weixin_43775295/article/details/144149069  浏览:    关键词:代理公司在线观看_现在比较流行的软件开发模型_专业seo优化推广_竞价网站
代理公司在线观看_现在比较流行的软件开发模型_专业seo优化推广_竞价网站

1 DenseNet

  
卷积神经网络结构的设计主要朝着两个方向发展,一个是更宽的网络(代表:GoogleNet、VGG),一个是更深的网络(代表:ResNet)。但是随着层数的加深会出现一个问题——梯度消失,这将会导致网络停止训练。到目前为止解决这个问题的思路基本都是在前后层之间加一个identity connections(short path)。

在这里插入图片描述

  
由上图中可知Resnet是做值的相加(也就是add操作),通道数是不变的。而DenseNet是做通道的合并(也就是Concatenation操作),就像Inception那样。从这两个公式就可以看出这两个网络的本质不同。此外DensetNet的前面一层输出也是后面所有层的输入,这也不同于ResNet残差网络。

在这里插入图片描述

  
DenseNet的Block结构如上图所示。

  
1*1卷积核的目的:减少输入的特征图数量,这样既能降维减少计算量,又能融合各个通道的特征。我们将使用BottleNeck Layers的DenseNet表示为DenseNet-B。(在论文的实验里,将1×1×n小卷积里的n设置为4k,k为每个H产生的特征图数量)

在这里插入图片描述

  
上图是DenseNet网络的整体网络结构示意图。其中1*1卷积核的目的是进一步压缩参数,并且在Transition Layer层有个参数Reduction(范围是0到1),表示将这些输出缩小到原来的多少倍,默认是0.5,这样传给下一个Dense Block的时候channel数量就会减少一半。当Reduction的值小于1的时候,我们就把带有这种层的网络称为DenseNet-C。

  
DenseNet网络的优点包括:

  • 减轻了梯度消失
  • 加强了feature的传递
  • 更有效地利用了feature
  • 一定程度上较少了参数数量
  • 一定程度上减轻了过拟合

2 图像分割的常用数据集

2.1 PASCAL VOC

VOC 数据集分为20类,包括背景为21类,分别如下:

  • Person: person
  • Animal: bird, cat, cow, dog, horse, sheep
  • Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
  • Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

VOC 数据集中用于分割比赛的图片实例如下,包含原图以及图像分类分割和图像物体分割两种图(PNG格式)。图像分类分割是在20种物体中,ground-turth图片上每个物体的轮廓填充都有一个特定的颜色,一共20种颜色。

在这里插入图片描述

2.2 MS COCO

MS COCO 是最大图像分割数据集,提供的类别有 80 类,有超过 33 万张图片,其中 20 万张有标注,整个数据集中个体的数目超过 150 万个。MS COCO是目前难度最大,挑战最高的图像分割数据集。

在这里插入图片描述

2.3 Cityscapes

Cityscapes 是驾驶领域进行效果和性能测试的图像分割数据集,它包含了5000张精细标注的图像和20000张粗略标注的图像,这些图像包含50个城市的不同场景、不同背景、不同街景,以及30类涵盖地面、建筑、交通标志、自然、天空、人和车辆等的物体标注。Cityscapes评测集有两项任务:像素级(Pixel-level)图像场景分割(以下简称语义分割)与实例级(Instance-level)图像场景分割(以下简称实例分割)。

在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com