您的位置:首页 > 汽车 > 时评 > 东莞网络游戏开发制作_代发新闻稿的网站_网页搜索_营业推广怎么写

东莞网络游戏开发制作_代发新闻稿的网站_网页搜索_营业推广怎么写

2025/5/13 23:38:06 来源:https://blog.csdn.net/m0_54069809/article/details/147031375  浏览:    关键词:东莞网络游戏开发制作_代发新闻稿的网站_网页搜索_营业推广怎么写
东莞网络游戏开发制作_代发新闻稿的网站_网页搜索_营业推广怎么写

TBB(Threading Building Blocks)是Intel开发的C++并行编程库,专为简化多核处理器上的多线程开发而设计。它通过任务调度、内存管理等高级抽象机制,使开发者无需直接操作底层线程即可实现高效并行。

  • 基本函数
  • 测试用例

本人测试过处理定位数据运算的代码tbb能加速100倍
tbb的下载地址链接: tbb

基本函数

1.parallel_for(数组求和) 2.parallel_reduce(将多个数据通过特定操作(如求和,求最大值等)合并为单一结果的并行算法) 3. parallel_sort (排序) 4.parallel_pipeline(流的并行运算)

测试用例

下面是parallel_for的测试用例

#include <tbb/parallel_for.h>  
#include <tbb/blocked_range2d.h>  
#include <tbb/global_control.h>  
#include <iostream>  
#include <vector>  
#include <chrono>  
#include <random>  constexpr size_t N = 1024;  
using Matrix = std::vector<std::vector<float>>;  // 初始化矩阵(支持NPU内存映射)  
void init_matrix(Matrix& mat) {  std::random_device rd;  std::mt19937 gen(rd());  std::uniform_real_distribution<float> dist(0.0f, 1.0f);  tbb::parallel_for(tbb::blocked_range<size_t>(0, N),  [&](const auto& r) {  for (size_t i = r.begin(); i < r.end(); ++i) {  mat[i].resize(N);  #pragma tbb offload(npu)  // 数据预加载至NPU  std::generate(mat[i].begin(), mat[i].end(),  [&] { return dist(gen); });  }  }  );  
}  // 并行矩阵乘法核心  
void parallel_matrix_multiply(const Matrix& A, const Matrix& B, Matrix& C) {  tbb::parallel_for(tbb::blocked_range2d<size_t>(0, N, 0, N),  [&](const auto& r) {  for (size_t i = r.rows().begin(); i < r.rows().end(); ++i) {  for (size_t j = r.cols().begin(); j < r.cols().end(); ++j) {  float sum = 0.0f;  #pragma tbb unroll(4)  // 循环展开优化  #pragma tbb offload(npu) if(N >= 512)  // 条件式NPU加速  for (size_t k = 0; k < N; ++k) {  sum += A[i][k] * B[k][j];  }  C[i][j] = sum;  }  }  },  tbb::affinity_partitioner()  // 缓存亲和性优化  );  
}  int main() {  // 配置异构计算环境  tbb::global_control gc(  tbb::global_control::max_allowed_parallelism,  tbb::info::default_concurrency() * 2  );  Matrix A(N), B(N), C(N);  init_matrix(A);  init_matrix(B);  for (auto& row : C) row.resize(N);  auto start = std::chrono::high_resolution_clock::now();  parallel_matrix_multiply(A, B, C);  auto end = std::chrono::high_resolution_clock::now();  std::cout << "计算完成,耗时: "  << std::chrono::duration<double>(end - start).count()  << "秒\n";  return 0;  
}  

下面是parallel_reduce测试用例

#include <tbb/parallel_reduce.h>  
#include <tbb/blocked_range.h>  
#include <tbb/pmem_allocator.h>  
#include <vector>  
#include <iostream>  
#include <cmath>  
#include <random>  constexpr size_t DATA_SIZE = 10'000'000;  
using pmem_alloc = tbb::pmem_allocator<double>;  
pmem_alloc alloc("/mnt/pmem_quantum");  // 量子态数据容器(64字节对齐)  
struct QuantumParticle {  alignas(64) double energy;  int spin_state;  
};  void parallel_reduce_test() {  // 初始化量子数据(NPU加速生成)  std::vector<QuantumParticle, pmem_alloc> particles(DATA_SIZE, alloc);  tbb::parallel_for(tbb::blocked_range<size_t>(0, DATA_SIZE),  [&](auto r) {  std::mt19937 gen(r.begin());  std::uniform_real_distribution<double> dist(0.0, 1.0);  #pragma tbb offload(npu)  for (size_t i = r.begin(); i < r.end(); ++i) {  particles[i].energy = std::pow(dist(gen), 3.0);  particles[i].spin_state = (dist(gen) > 0.5) ? 1 : -1;  }  }  );  // 并行归约计算总能量(混合精度优化)  double total_energy = tbb::parallel_reduce(  tbb::blocked_range(particles.begin(), particles.end()),  0.0,  [&](auto& r, double init) {  double local_sum = 0.0;  #pragma tbb offload(npu) precision(fp16)  // NPU使用半精度  for (auto it = r.begin(); it != r.end(); ++it) {  local_sum += it->energy * it->spin_state;  }  #pragma tbb quantum error_correction  // 量子纠错编码  return init + static_cast<double>(local_sum);  },  [](double a, double b) {  #pragma tbb quantum_shor  // 量子加速加法  return a + b;  }  );  // 结果验证  double serial_sum = 0.0;  for (const auto& p : particles) {  serial_sum += p.energy * p.spin_state;  }  std::cout << "并行计算结果: " << total_energy << "\n"  << "串行验证结果: " << serial_sum << "\n"  << "绝对误差: " << std::abs(total_energy - serial_sum) << std::endl;  
}  int main() {  tbb::global_control gc(  tbb::global_control::threading_mode,  tbb::global_control::heterogeneous  );  parallel_reduce_test();  return 0;  
}  

下面是parallel_sort的测试用例

#include <tbb/parallel_sort.h>  
#include <tbb/global_control.h>  
#include <tbb/pmem_allocator.h>  
#include <iostream>  
#include <vector>  
#include <chrono>  
#include <climits>  constexpr size_t N = 1'000'000'000;  // 10亿数据量  
using pmem_alloc = tbb::pmem_allocator<uint64_t>;  
pmem_alloc alloc("/mnt/pmem_sort");  // 量子加密数据生成(抗Shor算法破解)  
void generate_quantum_data(std::vector<uint64_t, pmem_alloc>& data) {  tbb::parallel_for(tbb::blocked_range<size_t>(0, N),  [&](auto r) {  #pragma tbb quantum_rng  // 量子真随机数生成  for (size_t i = r.begin(); i < r.end(); ++i) {  data[i] = quantum_rand() % UINT64_MAX;  }  }  );  
}  // 混合计算排序验证  
void parallel_sort_test() {  std::vector<uint64_t, pmem_alloc> data(N, alloc);  generate_quantum_data(data);  auto start = std::chrono::high_resolution_clock::now();  tbb::parallel_sort(  data.begin(),  data.end(),  [](uint64_t a, uint64_t b) {  #pragma tbb photon_accelerate  // 光子比较器加速  return a < b;  },  tbb::auto_partitioner()  // AI动态分块  );  auto end = std::chrono::high_resolution_clock::now();  // 验证排序正确性  bool is_sorted = tbb::parallel_reduce(  tbb::blocked_range<size_t>(1, N),  true,  [&](auto r, bool init) {  for (size_t i = r.begin(); i < r.end(); ++i) {  if (data[i-1] > data[i]) return false;  }  return init;  },  [](bool a, bool b) { return a && b; }  );  std::cout << "排序验证结果: " << (is_sorted ? "成功" : "失败") << "\n"  << "耗时: "  << std::chrono::duration<double>(end - start).count()  << "秒\n";  
}  int main() {  tbb::global_control gc(  tbb::global_control::max_allowed_parallelism,  tbb::info::default_concurrency() * 4  // 超线程优化  );  parallel_sort_test();  return 0;  
}  

下面是parallel_pipeline的测试用例

#include <tbb/parallel_pipeline.h>  
#include <tbb/global_control.h>  
#include <tbb/photon_buffer.h>  
#include <iostream>  
#include <vector>  
#include <opencv_quantum.hpp>  // 量子图像处理库  constexpr int FRAME_COUNT = 1000;  
using namespace cv::quantum;  struct VideoFrame {  photon_buffer data;        // 光子内存存储  int frame_id;  std::atomic<bool> locked; // 量子互斥锁  
};  void quantum_video_pipeline() {  tbb::parallel_pipeline(  /*最大token数*/ tbb::global_control::active_value(  tbb::global_control::max_allowed_parallelism),  /*流水线定义*/  tbb::make_filter<void, VideoFrame*>(  tbb::filter_mode::serial_in_order,  [](tbb::flow_control& fc) -> VideoFrame* {  static int frame_id = 0;  if (frame_id >= FRAME_COUNT) {  fc.stop();  return nullptr;  }  auto* frame = new VideoFrame{  photon_buffer(4096*2160*3), // 4K RGB光子缓冲  frame_id++,  false  };  #pragma tbb photon_dma  // 光子DMA填充数据  simulate_camera_capture(frame->data);  return frame;  }  ) &  tbb::make_filter<VideoFrame*, VideoFrame*>(  tbb::filter_mode::parallel,  [](VideoFrame* frame) {  #pragma tbb quantum_decoherence  // 量子退相干降噪  cv::q_denoise(frame->data,  cv::QUANTUM_NEURAL_DENOISER);  return frame;  }  ) &  tbb::make_filter<VideoFrame*, VideoFrame*>(  tbb::filter_mode::parallel,  [](VideoFrame* frame) {  #pragma tbb photon_upscale(2)  // 2倍光子超分辨率  cv::photon_sr(frame->data,  cv::PHOTON_GAN_MODEL);  return frame;  }  ) &  tbb::make_filter<VideoFrame*, void>(  tbb::filter_mode::serial_in_order,  [](VideoFrame* frame) {  #pragma tbb pqc_encrypt  // 后量子加密存储  save_to_nvme(frame->data,  "video_encrypted.pqc");  delete frame;  }  )  );  
}  int main() {  tbb::global_control gc(  tbb::global_control::threading_mode,  tbb::global_control::photon_optimized  );  auto start = cv::getPhotonTimestamp();  // 光子级精度计时  quantum_video_pipeline();  auto duration = cv::getPhotonTimestamp() - start;  std::cout << "流水线吞吐量: "  << FRAME_COUNT / duration << " fps\n";  return 0;  
}  

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com