您的位置:首页 > 汽车 > 新车 > 基于Python的机器学习系列(20):Mini-Batch K均值聚类

基于Python的机器学习系列(20):Mini-Batch K均值聚类

2025/5/20 10:12:57 来源:https://blog.csdn.net/ljd939952281/article/details/141691400  浏览:    关键词:基于Python的机器学习系列(20):Mini-Batch K均值聚类

简介

        K均值聚类(K-Means Clustering)是一种经典的无监督学习算法,但在处理大规模数据集时,计算成本较高。为了解决这一问题,Mini-Batch K均值聚类应运而生。Mini-Batch K均值聚类通过使用数据的子集(mini-batch)来更新簇中心,从而减少了计算量,加快了处理速度。

Mini-Batch K均值算法

        Mini-Batch K均值算法的基本步骤如下:

  1. 初始化簇中心:从数据集中随机选择K个样本作为初始簇中心。
  2. 批量更新
    • 随机选择数据的一个小批量。
    • 对于该批量中的每个样本,分配其到最近的簇中心。
    • 根据分配结果更新簇中心的位置。
  3. 停止条件:重复步骤2,直到达到最大迭代次数或簇中心变化小于设定的容忍度。

代码实现

        以下是Mini-Batch K均值聚类的Python实现:

from sklearn.metrics import pairwise_distances_argmin
from sklearn.datasets import make_blobs
from time import time
import numpy as npclass Mini_KMeans:def __init__(self, k, replacement=True, batch_size=100, max_iter=100):self.k = kself.replacement = replacementself.batch_size = batch_sizeself.max_iter = max_iterdef fit(self, X):m, n = X.shape# 1. 随机选择k个簇中心rng = np.random.RandomState(99)i = rng.permutation(m)[:self.k]self.centers = X[i]# 2. 批量更新for ix in np.arange(self.max_iter):random = rng.randint(m)X_batch = X[random:random+self.batch_size]# 3. 根据最近的簇中心分配标签labels = pairwise_distances_argmin(X_batch, self.centers)# 4. 更新簇中心new_centers = []for i in range(self.k):new_centers.append(X_batch[labels == i].mean(axis=0))new_centers = np.array(new_centers)# 5. 停止条件if np.allclose(self.centers, new_centers, rtol=0.2):breakelse:self.centers = new_centersprint(f"Done in {ix} iterations")# 计算总的簇内变异度total_with_variation_score = 0labels = pairwise_distances_argmin(X, self.centers)for i in range(self.k):cluster_mean = X[labels==i].mean(axis=0)total_with_variation_score += ((X[labels==i] - cluster_mean) ** 2).sum()print("Total within-cluster variation score: ", total_with_variation_score)def predict(self, X):return pairwise_distances_argmin(X, self.centers)# 主代码
X, _ = make_blobs(n_samples=1500, centers=4, cluster_std=0.60, random_state=0)
for k in range(2, 7):print(f"===== k = {k}")start = time()model = Mini_KMeans(k=k, max_iter=100)model.fit(X)print(f"Elapsed time: {time() - start:.2f} seconds")

结语

        Mini-Batch K均值聚类与标准K均值聚类相比,在处理大规模数据时表现出色,虽然在准确性上略有差距,但在计算速度上却能显著提高。与之前介绍的监督学习模型(如决策树、随机森林)相比,Mini-Batch K均值属于无监督学习范畴,不依赖于标签信息,而是通过数据的内部结构来发现潜在的分组。因此,它在数据探索和特征学习等任务中具有重要作用。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com