您的位置:首页 > 教育 > 锐评 > 如何制作奶油怎么做_厦门seo排名公司_网络推广网站建设_seo快速排名服务

如何制作奶油怎么做_厦门seo排名公司_网络推广网站建设_seo快速排名服务

2025/5/9 12:42:03 来源:https://blog.csdn.net/ergevv/article/details/143262065  浏览:    关键词:如何制作奶油怎么做_厦门seo排名公司_网络推广网站建设_seo快速排名服务
如何制作奶油怎么做_厦门seo排名公司_网络推广网站建设_seo快速排名服务

中值积分形式的预积分(一):https://blog.csdn.net/ergevv/article/details/143165323?spm=1001.2014.3001.5501
中值积分形式的预积分(二):https://blog.csdn.net/ergevv/article/details/143262065?spm=1001.2014.3001.5502
零偏更新以及预积分的更新:https://blog.csdn.net/ergevv/article/details/143274896?spm=1001.2014.3001.5501

接前文:中值积分形式的预积分(一):https://blog.csdn.net/ergevv/article/details/143165323?spm=1001.2014.3001.5501

3.5、对 δ b k g \delta b^g_k δbkg,只跟 a δ t \mathbf{a}\delta t aδt里的 q b i b k + 1 ( a ˉ b k + 1 − b k a ) q_{bi_bk+1}(\bar {a}^{bk+1} - b^a_{k}) qbibk+1(aˉbk+1bka)相关,则:
f 35 = ∂ δ β b i b k + 1 ∂ δ b k g = ∂ a δ t ∂ δ b k g = ∂ 1 2 q b i b k ⊗ [ 1 1 2 ( ω − δ b k g ) δ t ] ∂ δ b k g ( a b k + 1 − b k a ) δ t = 1 2 ∂ R b i b k exp ⁡ ( [ ( ω − δ b k g ) δ t ] × ) ( a b k + 1 − b k a ) δ t ∂ δ b k g = 1 2 ∂ R b i b k exp ⁡ ( [ ω δ t ] × ) exp ⁡ ( [ − J r ( ω δ t ) δ b k g δ t ] × ) ( a b k + 1 − b k a ) δ t ∂ δ b k g = 1 2 ∂ R b i b k exp ⁡ ( [ ω δ t ] × ) ( I + ( [ − J r ( ω δ t ) δ b k g δ t ] × ) ) ( a b k + 1 − b k a ) δ t ∂ δ b k g = 1 2 ∂ R b i b k + 1 ( [ − J r ( ω δ t ) δ b k g δ t ] × ) ( a b k + 1 − b k a ) δ t ∂ δ b k g = − 1 2 ∂ R b i b k + 1 [ ( a b k + 1 − b k a ) δ t ] × ( − J r ( ω δ t ) δ b k g δ t ) ∂ δ b k g = − 1 2 R b i b k + 1 [ ( a b k + 1 − b k a ) δ t ] × ( − J r ( ω δ t ) δ t ) \begin{align*} f_{35} &= \frac{ \partial \delta \beta^{bibk+1} }{ \partial \delta b^g_k} = \frac{ \partial \mathbf{a}\delta t}{ \partial \delta b^g_k} \\&= \frac{\partial \frac{1}{2} \mathbf{q}_{b_i b_k} \otimes \left[ \begin{matrix} 1\\ \frac{1}{2} (\boldsymbol{\omega} - \delta \mathbf{b}^g_k) \delta t \end{matrix} \right]}{\partial \delta \mathbf{b}^g_k} (\mathbf{a}^{b_{k+1}} - \mathbf{b}^a_k) \delta t\\ &=\frac {1}{2} \frac{\partial \mathbf{R}_{b_i b_k}\exp([(\omega-\delta \mathbf{b}^g_k)\delta t]_\times)(\mathbf{a}^{b_{k+1}} - \mathbf{b}^a_k) \delta t}{\partial \delta \mathbf{b}^g_k}\\ &=\frac {1}{2} \frac{\partial \mathbf{R}_{b_i b_k}\exp([\omega \delta t]_\times)\exp \left([-J_r(\omega \delta t)δ\mathbf{b}^g_k \delta t]_×\right)(\mathbf{a}^{b_{k+1}} - \mathbf{b}^a_k) \delta t}{\partial \delta \mathbf{b}^g_k}\\ &=\frac {1}{2} \frac{\partial \mathbf{R}_{b_i b_k}\exp([\omega \delta t]_\times)(I+ \left([-J_r(\omega \delta t)δ\mathbf{b}^g_k \delta t]_×\right))(\mathbf{a}^{b_{k+1}} - \mathbf{b}^a_k) \delta t}{\partial \delta \mathbf{b}^g_k}\\ &=\frac {1}{2} \frac{\partial \mathbf{R}_{b_i b_{k+1}} \left([-J_r(\omega \delta t)δ\mathbf{b}^g_k \delta t]_×\right)(\mathbf{a}^{b_{k+1}} - \mathbf{b}^a_k) \delta t}{\partial \delta \mathbf{b}^g_k}\\ &=-\frac {1}{2} \frac{\partial \mathbf{R}_{b_i b_{k+1}}[(\mathbf{a}^{b_{k+1}} - \mathbf{b}^a_k) \delta t]_\times \left(-J_r(\omega \delta t)δ\mathbf{b}^g_k \delta t\right)}{\partial \delta \mathbf{b}^g_k}\\ &=-\frac {1}{2} \mathbf{R}_{b_i b_{k+1}}[(\mathbf{a}^{b_{k+1}} - \mathbf{b}^a_k) \delta t]_\times \left(-J_r(\omega \delta t) \delta t\right) \end{align*} f35=δbkgδβbibk+1=δbkgaδt=δbkg21qbibk[121(ωδbkg)δt](abk+1bka)δt=21δbkgRbibkexp([(ωδbkg)δt]×)(abk+1bka)δt=21δbkgRbibkexp([ωδt]×)exp([Jr(ωδt)δbkgδt]×)(abk+1bka)δt=21δbkgRbibkexp([ωδt]×)(I+([Jr(ωδt)δbkgδt]×))(abk+1bka)δt=21δbkgRbibk+1([Jr(ωδt)δbkgδt]×)(abk+1bka)δt=21δbkgRbibk+1[(abk+1bka)δt]×(Jr(ωδt)δbkgδt)=21Rbibk+1[(abk+1bka)δt]×(Jr(ωδt)δt)

4~5、 δ b k + 1 a \delta b^a_{k+1} δbk+1a δ b k + 1 g \delta b^g_{k+1} δbk+1g对其他状态量的求导:
根据:
b k + 1 a = b k a + n b k a δ t b k + 1 g = b k g + n b k g δ t \begin{aligned} b^a_{k+1} &= b^a_k + n_{b^a_k} δt \\ b^g_{k+1} &= b^g_k + n_{b^g_k} δt \end{aligned} bk+1abk+1g=bka+nbkaδt=bkg+nbkgδt
易得:
f 41 = ∂ δ b k + 1 a ∂ δ α b i b k = 0 f 42 = ∂ δ b k + 1 a ∂ δ θ b i b k = 0 f 43 = ∂ δ b k + 1 a ∂ δ β b i b k = 0 f 44 = ∂ δ b k + 1 a ∂ δ b k a = I f 45 = ∂ δ b k + 1 a ∂ δ b k g = 0 \begin{align*} f_{41} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta \alpha^{bibk}} = 0\\ f_{42} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta \theta^{bibk}} = 0\\ f_{43} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta \beta^{bibk}} = 0\\ f_{44} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta b^a_{k}} = I\\ f_{45} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta b^g_{k}} = 0\\ \end{align*} f41f42f43f44f45=δαbibkδbk+1a=0=δθbibkδbk+1a=0=δβbibkδbk+1a=0=δbkaδbk+1a=I=δbkgδbk+1a=0

f 51 = ∂ δ b k + 1 g ∂ δ α b i b k = 0 f 52 = ∂ δ b k + 1 g ∂ δ θ b i b k = 0 f 53 = ∂ δ b k + 1 g ∂ δ β b i b k = 0 f 54 = ∂ δ b k + 1 g ∂ δ b k a = 0 f 55 = ∂ δ b k + 1 g ∂ δ b k g = I \begin{align*} f_{51} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta \alpha^{bibk}} = 0\\ f_{52} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta \theta^{bibk}} = 0\\ f_{53} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta \beta^{bibk}} = 0\\ f_{54} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta b^a_{k}} = 0\\ f_{55} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta b^g_{k}} = I\\ \end{align*} f51f52f53f54f55=δαbibkδbk+1g=0=δθbibkδbk+1g=0=δβbibkδbk+1g=0=δbkaδbk+1g=0=δbkgδbk+1g=I

G 矩阵的推导: G矩阵的推导: G矩阵的推导:
1、 α \alpha α对噪声量的求导:
1.1、对 δ n k a δn^{a}_{k} δnka,只跟 1 2 a δ t 2 \frac{1}{2}\mathbf{a}\delta t^2 21aδt2里的 q b i b k ( a ˉ b k − b k a ) q_{bibk}(\bar {a}^{bk} - b^a_{k}) qbibk(aˉbkbka)相关,则:
g 11 = ∂ δ α b i b k + 1 ∂ δ n k a = ∂ 1 2 a δ t 2 ∂ δ n k a = ∂ 1 4 q b i b k ( a ˉ b k + δ n k a − b k a ) δ t 2 ∂ δ n k a = 1 4 q b i b k δ t 2 g_{11} = \frac{ \partial \delta \alpha^{bibk+1} }{ \partial \delta n^{a}_{k}} = \frac{ \partial \frac{1}{2}\mathbf{a}\delta t^2}{ \partial \delta n^{a}_{k}} = \frac{ \partial \frac{1}{4}q_{bibk}(\bar {a}^{bk} + \delta n^{a}_{k}- b^a_{k})\delta t^2}{ \partial \delta n^{a}_{k}} = \frac{1}{4}q_{bibk} \delta t^2 g11=δnkaδαbibk+1=δnka21aδt2=δnka41qbibk(aˉbk+δnkabka)δt2=41qbibkδt2

1.2、对 δ n k g δn^{g}_{k} δnkg,只跟 1 2 a δ t 2 \frac{1}{2}\mathbf{a}\delta t^2 21aδt2里的 q b i b k + 1 ( a ˉ b k − b k a ) q_{bibk+1}(\bar {a}^{bk} - b^a_{k}) qbibk+1(aˉbkbka)相关,则:
g 12 = ∂ δ α b i b k + 1 ∂ δ n k g = ∂ 1 2 a δ t 2 ∂ δ n k g = ∂ 1 4 q b i b k + 1 ( a ˉ b k + 1 − b k a ) δ t 2 ∂ δ n k g = ∂ 1 4 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 + δ n k g ) − b k g ) δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t 2 ∂ δ n k g = ∂ 1 4 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 ) − b k g ) δ t + 1 2 δ n k g δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t 2 ∂ δ n k g = ∂ 1 4 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 ) − b k g ) δ t ] × ) exp ⁡ ( [ 1 2 δ n k g δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t 2 ∂ δ n k g = ∂ − 1 4 q b i b k + 1 [ ( a ˉ b k + 1 − b k a ) δ t 2 ] × 1 2 δ n k g δ t ∂ δ n k g = − 1 4 q b i b k + 1 [ ( a ˉ b k + 1 − b k a ) δ t 2 ] × 1 2 δ t \begin{align*} g_{12} &= \frac{ \partial \delta \alpha^{bibk+1} }{ \partial \delta n^{g}_{k}} = \frac{ \partial \frac{1}{2}\mathbf{a}\delta t^2}{ \partial \delta n^{g}_{k}} \\ &= \frac{ \partial \frac{1}{4}q_{bibk+1}(\bar {a}^{bk+1} - b^a_{k})\delta t^2}{ \partial \delta n^{g}_{k}} \\ &= \frac{ \partial \frac{1}{4}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1}+ \delta n^{g}_{k})-b^g_k)\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t^2}{ \partial \delta n^{g}_{k}} \\ & = \frac{ \partial \frac{1}{4}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1})-b^g_k)\delta t+ \frac{1}{2}\delta n^{g}_{k}\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t^2}{ \partial \delta n^{g}_{k}} \\ & = \frac{ \partial \frac{1}{4}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1})-b^g_k)\delta t]_\times)\exp([ \frac{1}{2}\delta n^{g}_{k}\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t^2}{ \partial \delta n^{g}_{k}} \\ & = \frac{ \partial- \frac{1}{4}q_{bibk+1}[(\bar {a}^{bk+1} - b^a_{k})\delta t^2]_\times \frac{1}{2}\delta n^{g}_{k}\delta t}{ \partial \delta n^{g}_{k}} \\ & = -\frac{1}{4}q_{bibk+1}[(\bar {a}^{bk+1} - b^a_{k})\delta t^2]_\times \frac{1}{2}\delta t \end{align*} g12=δnkgδαbibk+1=δnkg21aδt2=δnkg41qbibk+1(aˉbk+1bka)δt2=δnkg41qbibkexp([(21(ωbk+ωbk+1+δnkg)bkg)δt]×)(aˉbk+1bka)δt2=δnkg41qbibkexp([(21(ωbk+ωbk+1)bkg)δt+21δnkgδt]×)(aˉbk+1bka)δt2=δnkg41qbibkexp([(21(ωbk+ωbk+1)bkg)δt]×)exp([21δnkgδt]×)(aˉbk+1bka)δt2=δnkg41qbibk+1[(aˉbk+1bka)δt2]×21δnkgδt=41qbibk+1[(aˉbk+1bka)δt2]×21δt
其中利用公式: exp ⁡ ( [ ϕ + δ ϕ ] × ) ≈ exp ⁡ ( [ ϕ ] × ) exp ⁡ ( [ J r ( ϕ ) δ ϕ ] × ) \exp \left([ϕ + δϕ]_×\right) ≈ \exp([ϕ]_×)\exp \left([J_r(ϕ)δϕ]_×\right) exp([ϕ+δϕ]×)exp([ϕ]×)exp([Jr(ϕ)δϕ]×) J r ( ϕ ) J_r(ϕ) Jr(ϕ) 称之为 SO3 的右雅克比。当 ϕ ϕ ϕ 非常小时, J r ( ϕ ) ≈ I J_r(ϕ) ≈ I Jr(ϕ)I

1.3、对 δ n k + 1 a δn^{a}_{k+1} δnk+1a,与1.1推导一致:
g 13 = ∂ δ α b i b k + 1 ∂ δ n k + 1 a = ∂ 1 2 a δ t 2 ∂ δ n k + 1 a = ∂ 1 4 q b i b k + 1 ( a ˉ b k + 1 + δ n k + 1 a − b k a ) δ t 2 ∂ δ n k + 1 a = 1 4 q b i b k + 1 δ t 2 g_{13} = \frac{ \partial \delta \alpha^{bibk+1} }{ \partial \delta n^{a}_{k+1}} = \frac{ \partial \frac{1}{2}\mathbf{a}\delta t^2}{ \partial \delta n^{a}_{k+1}} = \frac{ \partial \frac{1}{4}q_{bibk+1}(\bar {a}^{bk+1} + \delta n^{a}_{k+1}- b^a_{k})\delta t^2}{ \partial \delta n^{a}_{k+1}} = \frac{1}{4}q_{bibk+1} \delta t^2 g13=δnk+1aδαbibk+1=δnk+1a21aδt2=δnk+1a41qbibk+1(aˉbk+1+δnk+1abka)δt2=41qbibk+1δt2

1.4、对 δ n k + 1 g δn^{g}_{k+1} δnk+1g,与1.2推导一致:
g 14 = ∂ δ α b i b k + 1 ∂ δ n k g + 1 = ∂ 1 2 a δ t 2 ∂ δ n k g + 1 = ∂ 1 4 q b i b k + 1 ( a ˉ b k + 1 − b k a ) δ t 2 ∂ δ n k g + 1 = ∂ 1 4 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 + δ n k g + 1 ) − b k g ) δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t 2 ∂ δ n k g + 1 = ∂ 1 4 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 ) − b k g ) δ t + 1 2 δ n k g + 1 δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t 2 ∂ δ n k g + 1 = ∂ 1 4 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 ) − b k g ) δ t ] × ) exp ⁡ ( [ 1 2 δ n k g + 1 δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t 2 ∂ δ n k g + 1 = ∂ − 1 4 q b i b k + 1 [ ( a ˉ b k + 1 − b k a ) δ t 2 ] × 1 2 δ n k g + 1 δ t ∂ δ n k g + 1 = − 1 4 q b i b k + 1 [ ( a ˉ b k + 1 − b k a ) δ t 2 ] × 1 2 δ t \begin{align*} g_{14} &= \frac{ \partial \delta \alpha^{bibk+1} }{ \partial \delta n^{g+1}_{k}} = \frac{ \partial \frac{1}{2}\mathbf{a}\delta t^2}{ \partial \delta n^{g+1}_{k}} \\ &= \frac{ \partial \frac{1}{4}q_{bibk+1}(\bar {a}^{bk+1} - b^a_{k})\delta t^2}{ \partial \delta n^{g+1}_{k}} \\ &= \frac{ \partial \frac{1}{4}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1}+ \delta n^{g+1}_{k})-b^g_k)\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t^2}{ \partial \delta n^{g+1}_{k}} \\ & = \frac{ \partial \frac{1}{4}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1})-b^g_k)\delta t+ \frac{1}{2}\delta n^{g+1}_{k}\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t^2}{ \partial \delta n^{g+1}_{k}} \\ & = \frac{ \partial \frac{1}{4}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1})-b^g_k)\delta t]_\times)\exp([ \frac{1}{2}\delta n^{g+1}_{k}\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t^2}{ \partial \delta n^{g+1}_{k}} \\ & = \frac{ \partial- \frac{1}{4}q_{bibk+1}[(\bar {a}^{bk+1} - b^a_{k})\delta t^2]_\times \frac{1}{2}\delta n^{g+1}_{k}\delta t}{ \partial \delta n^{g+1}_{k}} \\ & = -\frac{1}{4}q_{bibk+1}[(\bar {a}^{bk+1} - b^a_{k})\delta t^2]_\times \frac{1}{2}\delta t \end{align*} g14=δnkg+1δαbibk+1=δnkg+121aδt2=δnkg+141qbibk+1(aˉbk+1bka)δt2=δnkg+141qbibkexp([(21(ωbk+ωbk+1+δnkg+1)bkg)δt]×)(aˉbk+1bka)δt2=δnkg+141qbibkexp([(21(ωbk+ωbk+1)bkg)δt+21δnkg+1δt]×)(aˉbk+1bka)δt2=δnkg+141qbibkexp([(21(ωbk+ωbk+1)bkg)δt]×)exp([21δnkg+1δt]×)(aˉbk+1bka)δt2=δnkg+141qbibk+1[(aˉbk+1bka)δt2]×21δnkg+1δt=41qbibk+1[(aˉbk+1bka)δt2]×21δt

1.5~1.6、对 δ n b k a 、 δ n b k g δn_{b^{a}_{k}}、δn_{b^{g}_{k}} δnbkaδnbkg δ α b i b k + 1 \delta \alpha^{bibk+1} δαbibk+1与其无关,故:
g 15 = ∂ δ α b i b k + 1 ∂ δ n b k a = 0 g 16 = ∂ δ α b i b k + 1 ∂ δ n b k g = 0 \begin{align*} g_{15} &= \frac{ \partial \delta \alpha^{bibk+1}}{ \partial \delta n_{b^a_{k}}} = 0\\ g_{16} &= \frac{ \partial \delta \alpha^{bibk+1}}{ \partial \delta n_{b^g_{k}}} = 0\\ \end{align*} g15g16=δnbkaδαbibk+1=0=δnbkgδαbibk+1=0

2、 θ \theta θ对噪声量的求导:
2.1、2.3、2.5~2.6、对 δ n k a 、 δ n k + a 、 δ n b k a 、 δ n b k g δn^{a}_{k}、δn^{a}_{k+}、δn_{b^{a}_{k}}、δn_{b^{g}_{k}} δnkaδnk+aδnbkaδnbkg δ θ b i b k + 1 \delta \theta^{bibk+1} δθbibk+1与其无关,则:
g 21 = ∂ δ θ b i b k + 1 ∂ δ n b k a = 0 g 22 = ∂ δ θ b i b k + 1 ∂ δ n b k g = 0 g 25 = ∂ δ θ b i b k + 1 ∂ δ n b k a = 0 g 26 = ∂ δ θ b i b k + 1 ∂ δ n b k g = 0 \begin{align*} g_{21} &= \frac{ \partial \delta \theta^{bibk+1}}{ \partial \delta n_{b^a_{k}}} = 0\\ g_{22} &= \frac{ \partial \delta \theta^{bibk+1}}{ \partial \delta n_{b^g_{k}}} = 0\\ g_{25} &= \frac{ \partial \delta \theta^{bibk+1}}{ \partial \delta n_{b^a_{k}}} = 0\\ g_{26} &= \frac{ \partial \delta \theta^{bibk+1}}{ \partial \delta n_{b^g_{k}}} = 0\\ \end{align*} g21g22g25g26=δnbkaδθbibk+1=0=δnbkgδθbibk+1=0=δnbkaδθbibk+1=0=δnbkgδθbibk+1=0

2.2、对 δ n k g δn^{g}_{k} δnkg,类似$f_{25}的推导:

R b i b k + 1 exp ⁡ ( [ δ θ b i b k + 1 ] × ) = R b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 + δ n k g ) − b k g ) δ t ] × ) = R b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 ) − b k g ) δ t ] × ) exp ⁡ ( [ 1 2 δ n k g δ t ] × ) = R b i b k + 1 exp ⁡ ( [ 1 2 δ n k g δ t ] × ) \begin{align*} R_{bibk+1}\exp ([\delta \theta^{bibk+1}]_\times) &= R_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1}+ \delta n^{g}_{k})-b^g_k)\delta t]_\times)\\ &=R_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1})-b^g_k)\delta t]_\times)\exp([ \frac{1}{2}\delta n^{g}_{k}\delta t]_\times)\\ &={R}_{bibk+1}\exp([ \frac{1}{2}\delta n^{g}_{k}\delta t]_\times) \end{align*} Rbibk+1exp([δθbibk+1]×)=Rbibkexp([(21(ωbk+ωbk+1+δnkg)bkg)δt]×)=Rbibkexp([(21(ωbk+ωbk+1)bkg)δt]×)exp([21δnkgδt]×)=Rbibk+1exp([21δnkgδt]×)
g 22 = ∂ δ θ b i b k + 1 ∂ δ n k g = ∂ 1 2 δ n k g δ t ∂ δ n k g = 1 2 I δ t g_{22} = \frac{ \partial \delta \theta^{bibk+1} }{ \partial δn^{g}_{k}} =\frac{ \partial \frac{1}{2}\delta n^{g}_{k}\delta t}{ \partial δn^{g}_{k}} = \frac{1}{2}I \delta t g22=δnkgδθbibk+1=δnkg21δnkgδt=21Iδt

2.4、对 δ n k g δn^{g}_{k} δnkg,类似$f_{25}的推导:

R b i b k + 1 exp ⁡ ( [ δ θ b i b k + 1 ] × ) = R b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 + δ n k + 1 g ) − b k g ) δ t ] × ) = R b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 ) − b k g ) δ t ] × ) exp ⁡ ( [ 1 2 δ n k + 1 g δ t ] × ) = R b i b k + 1 exp ⁡ ( [ 1 2 δ n k + 1 g δ t ] × ) \begin{align*} R_{bibk+1}\exp ([\delta \theta^{bibk+1}]_\times) &= R_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1}+ \delta n^{g}_{k+1})-b^g_k)\delta t]_\times)\\ &=R_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1})-b^g_k)\delta t]_\times)\exp([ \frac{1}{2}\delta n^{g}_{k+1}\delta t]_\times)\\ &={R}_{bibk+1}\exp([ \frac{1}{2}\delta n^{g}_{k+1}\delta t]_\times) \end{align*} Rbibk+1exp([δθbibk+1]×)=Rbibkexp([(21(ωbk+ωbk+1+δnk+1g)bkg)δt]×)=Rbibkexp([(21(ωbk+ωbk+1)bkg)δt]×)exp([21δnk+1gδt]×)=Rbibk+1exp([21δnk+1gδt]×)
g 24 = ∂ δ θ b i b k + 1 ∂ δ n k + 1 g = ∂ 1 2 δ n k + 1 g δ t ∂ δ n k + 1 g = 1 2 I δ t g_{24} = \frac{ \partial \delta \theta^{bibk+1} }{ \partial δn^{g}_{k+1}} =\frac{ \partial \frac{1}{2}\delta n^{g}_{k+1}\delta t}{ \partial δn^{g}_{k+1}} = \frac{1}{2}I \delta t g24=δnk+1gδθbibk+1=δnk+1g21δnk+1gδt=21Iδt

3、 β \beta β对噪声量的求导:
3.1、对 δ n k a δn^{a}_{k} δnka,只跟 a δ t \mathbf{a}\delta t aδt里的 q b i b k ( a ˉ b k − b k a ) q_{bibk}(\bar {a}^{bk} - b^a_{k}) qbibk(aˉbkbka)相关,则:
g 31 = ∂ δ β b i b k + 1 ∂ δ n k a = ∂ a δ t ∂ δ n k a = ∂ 1 2 q b i b k ( a ˉ b k + δ n k a − b k a ) δ t ∂ δ n k a = 1 2 q b i b k δ t g_{31} = \frac{ \partial \delta \beta^{bibk+1} }{ \partial \delta n^{a}_{k}} = \frac{ \partial \mathbf{a}\delta t}{ \partial \delta n^{a}_{k}} = \frac{ \partial \frac{1}{2}q_{bibk}(\bar {a}^{bk} + \delta n^{a}_{k}- b^a_{k})\delta t}{ \partial \delta n^{a}_{k}} = \frac{1}{2}q_{bibk} \delta t g31=δnkaδβbibk+1=δnkaaδt=δnka21qbibk(aˉbk+δnkabka)δt=21qbibkδt

3.2、对 δ n k g δn^{g}_{k} δnkg,只跟 a δ t \mathbf{a}\delta t aδt里的 q b i b k + 1 ( a ˉ b k − b k a ) q_{bibk+1}(\bar {a}^{bk} - b^a_{k}) qbibk+1(aˉbkbka)相关,则:
g 32 = ∂ δ β b i b k + 1 ∂ δ n k g = ∂ a δ t ∂ δ n k g = ∂ 1 2 q b i b k + 1 ( a ˉ b k + 1 − b k a ) δ t ∂ δ n k g = ∂ 1 2 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 + δ n k g ) − b k g ) δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t ∂ δ n k g = ∂ 1 2 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 ) − b k g ) δ t + 1 2 δ n k g δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t ∂ δ n k g = ∂ 1 2 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 ) − b k g ) δ t ] × ) exp ⁡ ( [ 1 2 δ n k g δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t ∂ δ n k g = ∂ − 1 2 q b i b k + 1 [ ( a ˉ b k + 1 − b k a ) δ t ] × 1 2 δ n k g δ t ∂ δ n k g = − 1 2 q b i b k + 1 [ ( a ˉ b k + 1 − b k a ) δ t ] × 1 2 δ t \begin{align*} g_{32} &= \frac{ \partial \delta \beta^{bibk+1} }{ \partial \delta n^{g}_{k}} = \frac{ \partial \mathbf{a}\delta t}{ \partial \delta n^{g}_{k}} \\ &= \frac{ \partial \frac{1}{2}q_{bibk+1}(\bar {a}^{bk+1} - b^a_{k})\delta t}{ \partial \delta n^{g}_{k}} \\ &= \frac{ \partial \frac{1}{2}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1}+ \delta n^{g}_{k})-b^g_k)\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t}{ \partial \delta n^{g}_{k}} \\ & = \frac{ \partial \frac{1}{2}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1})-b^g_k)\delta t+ \frac{1}{2}\delta n^{g}_{k}\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t}{ \partial \delta n^{g}_{k}} \\ & = \frac{ \partial \frac{1}{2}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1})-b^g_k)\delta t]_\times)\exp([ \frac{1}{2}\delta n^{g}_{k}\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t}{ \partial \delta n^{g}_{k}} \\ & = \frac{ \partial- \frac{1}{2}q_{bibk+1}[(\bar {a}^{bk+1} - b^a_{k})\delta t]_\times \frac{1}{2}\delta n^{g}_{k}\delta t}{ \partial \delta n^{g}_{k}} \\ & = -\frac{1}{2}q_{bibk+1}[(\bar {a}^{bk+1} - b^a_{k})\delta t]_\times \frac{1}{2}\delta t \end{align*} g32=δnkgδβbibk+1=δnkgaδt=δnkg21qbibk+1(aˉbk+1bka)δt=δnkg21qbibkexp([(21(ωbk+ωbk+1+δnkg)bkg)δt]×)(aˉbk+1bka)δt=δnkg21qbibkexp([(21(ωbk+ωbk+1)bkg)δt+21δnkgδt]×)(aˉbk+1bka)δt=δnkg21qbibkexp([(21(ωbk+ωbk+1)bkg)δt]×)exp([21δnkgδt]×)(aˉbk+1bka)δt=δnkg21qbibk+1[(aˉbk+1bka)δt]×21δnkgδt=21qbibk+1[(aˉbk+1bka)δt]×21δt

3.3、对 δ n k + 1 a δn^{a}_{k+1} δnk+1a,只跟 a δ t \mathbf{a}\delta t aδt里的 q b i b k + 1 ( a ˉ b k − b k a ) q_{bibk+1}(\bar {a}^{bk} - b^a_{k}) qbibk+1(aˉbkbka)相关,则:
g 31 = ∂ δ β b i b k + 1 ∂ δ n k + 1 a = ∂ a δ t ∂ δ n k + 1 a = ∂ 1 2 q b i b k + 1 ( a ˉ b k + δ n k + 1 a − b k a ) δ t ∂ δ n k + 1 a = 1 2 q b i b k + 1 δ t g_{31} = \frac{ \partial \delta \beta^{bibk+1} }{ \partial \delta n^{a}_{k+1}} = \frac{ \partial \mathbf{a}\delta t}{ \partial \delta n^{a}_{k+1}} = \frac{ \partial \frac{1}{2}q_{bibk+1}(\bar {a}^{bk} + \delta n^{a}_{k+1}- b^a_{k})\delta t}{ \partial \delta n^{a}_{k+1}} = \frac{1}{2}q_{bibk+1} \delta t g31=δnk+1aδβbibk+1=δnk+1aaδt=δnk+1a21qbibk+1(aˉbk+δnk+1abka)δt=21qbibk+1δt

3.4、对 δ n k + 1 g δn^{g}_{k+1} δnk+1g,只跟 a δ t \mathbf{a}\delta t aδt里的 q b i b k + 1 ( a ˉ b k − b k a ) q_{bibk+1}(\bar {a}^{bk} - b^a_{k}) qbibk+1(aˉbkbka)相关,则:
g 32 = ∂ δ β b i b k + 1 ∂ δ n k + 1 g = ∂ a δ t ∂ δ n k + 1 g = ∂ 1 2 q b i b k + 1 ( a ˉ b k + 1 − b k a ) δ t ∂ δ n k + 1 g = ∂ 1 2 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 + δ n k + 1 g ) − b k g ) δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t ∂ δ n k + 1 g = ∂ 1 2 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 ) − b k g ) δ t + 1 2 δ n k + 1 g δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t ∂ δ n k + 1 g = ∂ 1 2 q b i b k exp ⁡ ( [ ( 1 2 ( ω b k + ω b k + 1 ) − b k g ) δ t ] × ) exp ⁡ ( [ 1 2 δ n k + 1 g δ t ] × ) ( a ˉ b k + 1 − b k a ) δ t ∂ δ n k + 1 g = ∂ − 1 2 q b i b k + 1 [ ( a ˉ b k + 1 − b k a ) δ t ] × 1 2 δ n k + 1 g δ t ∂ δ n k + 1 g = − 1 2 q b i b k + 1 [ ( a ˉ b k + 1 − b k a ) δ t ] × 1 2 δ t \begin{align*} g_{32} &= \frac{ \partial \delta \beta^{bibk+1} }{ \partial \delta n^{g}_{k+1}} = \frac{ \partial \mathbf{a}\delta t}{ \partial \delta n^{g}_{k+1}} \\ &= \frac{ \partial \frac{1}{2}q_{bibk+1}(\bar {a}^{bk+1} - b^a_{k})\delta t}{ \partial \delta n^{g}_{k+1}} \\ &= \frac{ \partial \frac{1}{2}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1}+ \delta n^{g}_{k+1})-b^g_k)\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t}{ \partial \delta n^{g}_{k+1}} \\ & = \frac{ \partial \frac{1}{2}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1})-b^g_k)\delta t+ \frac{1}{2}\delta n^{g}_{k+1}\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t}{ \partial \delta n^{g}_{k+1}} \\ & = \frac{ \partial \frac{1}{2}q_{bibk}\exp([(\frac{1}{2}(\omega^{bk}+\omega^{bk+1})-b^g_k)\delta t]_\times)\exp([ \frac{1}{2}\delta n^{g}_{k+1}\delta t]_\times)(\bar {a}^{bk+1} - b^a_{k})\delta t}{ \partial \delta n^{g}_{k+1}} \\ & = \frac{ \partial- \frac{1}{2}q_{bibk+1}[(\bar {a}^{bk+1} - b^a_{k})\delta t]_\times \frac{1}{2}\delta n^{g}_{k+1}\delta t}{ \partial \delta n^{g}_{k+1}} \\ & = -\frac{1}{2}q_{bibk+1}[(\bar {a}^{bk+1} - b^a_{k})\delta t]_\times \frac{1}{2}\delta t \end{align*} g32=δnk+1gδβbibk+1=δnk+1gaδt=δnk+1g21qbibk+1(aˉbk+1bka)δt=δnk+1g21qbibkexp([(21(ωbk+ωbk+1+δnk+1g)bkg)δt]×)(aˉbk+1bka)δt=δnk+1g21qbibkexp([(21(ωbk+ωbk+1)bkg)δt+21δnk+1gδt]×)(aˉbk+1bka)δt=δnk+1g21qbibkexp([(21(ωbk+ωbk+1)bkg)δt]×)exp([21δnk+1gδt]×)(aˉbk+1bka)δt=δnk+1g21qbibk+1[(aˉbk+1bka)δt]×21δnk+1gδt=21qbibk+1[(aˉbk+1bka)δt]×21δt

3.5~3.6、对 δ n b k a 、 δ n b k g δn_{b^{a}_{k}}、δn_{b^{g}_{k}} δnbkaδnbkg δ β b i b k + 1 \delta \beta^{bibk+1} δβbibk+1与其无关,故:
g 35 = ∂ δ β b i b k + 1 ∂ δ n b k a = 0 g 36 = ∂ δ β b i b k + 1 ∂ δ n b k g = 0 \begin{align*} g_{35} &= \frac{ \partial \delta \beta^{bibk+1}}{ \partial \delta n_{b^a_{k}}} = 0\\ g_{36} &= \frac{ \partial \delta \beta^{bibk+1}}{ \partial \delta n_{b^g_{k}}} = 0\\ \end{align*} g35g36=δnbkaδβbibk+1=0=δnbkgδβbibk+1=0

4~5、 δ b k + 1 a \delta b^a_{k+1} δbk+1a δ b k + 1 g \delta b^g_{k+1} δbk+1g对噪声量的求导:
根据:
b k + 1 a = b k a + n b k a δ t b k + 1 g = b k g + n b k g δ t \begin{aligned} b^a_{k+1} &= b^a_k + n_{b^a_k} δt \\ b^g_{k+1} &= b^g_k + n_{b^g_k} δt \end{aligned} bk+1abk+1g=bka+nbkaδt=bkg+nbkgδt
易得:
g 41 = ∂ δ b k + 1 a ∂ δ n k a = 0 g 42 = ∂ δ b k + 1 a ∂ δ n k g = 0 g 43 = ∂ δ b k + 1 a ∂ δ n k + 1 a = 0 g 44 = ∂ δ b k + 1 a ∂ δ n k + 1 g = 0 g 45 = ∂ δ b k + 1 a ∂ δ n b k a = I δ t g 46 = ∂ δ b k + 1 a ∂ δ n b k g = 0 \begin{align*} g_{41} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta n^{a}_{k}} = 0\\ g_{42} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta n^{g}_{k}} = 0\\ g_{43} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta n^{a}_{k+1}} = 0\\ g_{44} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta n^{g}_{k+1}} = 0\\ g_{45} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta n_{b^a_{k}}} = I\delta t \\ g_{46} &= \frac{ \partial \delta b^a_{k+1}}{ \partial \delta n_{b^g_{k}}} = 0 \\ \end{align*} g41g42g43g44g45g46=δnkaδbk+1a=0=δnkgδbk+1a=0=δnk+1aδbk+1a=0=δnk+1gδbk+1a=0=δnbkaδbk+1a=Iδt=δnbkgδbk+1a=0

g 51 = ∂ δ b k + 1 g ∂ δ n k a = 0 g 52 = ∂ δ b k + 1 g ∂ δ n k g = 0 g 53 = ∂ δ b k + 1 g ∂ δ n k + 1 a = 0 g 54 = ∂ δ b k + 1 g ∂ δ n k + 1 g = 0 g 55 = ∂ δ b k + 1 g ∂ δ n b k a = 0 g 56 = ∂ δ b k + 1 g ∂ δ n b k g = I δ t \begin{align*} g_{51} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta n^{a}_{k}} = 0\\ g_{52} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta n^{g}_{k}} = 0\\ g_{53} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta n^{a}_{k+1}} = 0\\ g_{54} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta n^{g}_{k+1}} = 0\\ g_{55} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta n_{b^a_{k}}} = 0 \\ g_{56} &= \frac{ \partial \delta b^g_{k+1}}{ \partial \delta n_{b^g_{k}}} = I\delta t \\ \end{align*} g51g52g53g54g55g56=δnkaδbk+1g=0=δnkgδbk+1g=0=δnk+1aδbk+1g=0=δnk+1gδbk+1g=0=δnbkaδbk+1g=0=δnbkgδbk+1g=Iδt

至此,F和G矩阵推导完毕。

预积分的协方差递推公式:

y = A x , x ∈ N ( 0 , Σ x ) y=Ax, x∈N(0,Σ_x) y=Ax,xN(0,Σx),则有 Σ y = A Σ x A T Σy= AΣ_xA^T Σy=AΣxAT
Σ y = E ( ( A x ) x ( A x ) T ) = E ( A x x T A T ) = A Σ x A T Σ_y = E((Ax)x(Ax)^T) = E(Axx^TA^T) = AΣ_xA^T Σy=E((Ax)x(Ax)T)=E(AxxTAT)=AΣxAT

[ δ n k a δ n k g δ n k + 1 a δ n k + 1 g δ n b k a δ n b k g ] \left[ \begin{matrix} δn^{a}_{k}\\ δn^{g}_{k}\\ δn^{a}_{k+1}\\ δn^{g}_{k+1}\\ δn_{b^{a}_{k}}\\ δn_{b^{g}_{k}} \end{matrix} \right] δnkaδnkgδnk+1aδnk+1gδnbkaδnbkg 的协方差矩阵为 Σ N \Sigma_N ΣN,这个矩阵需要标定或者自己定义参数。
所以,
Σ k + 1 = F ∗ Σ k ∗ F T + G ∗ Σ N ∗ G T \Sigma_{k+1} = F * \Sigma_{k} *F^T + G*\Sigma_N*G^T Σk+1=FΣkFT+GΣNGT

接后文:零偏更新以及预积分的更新:https://blog.csdn.net/ergevv/article/details/143274896?spm=1001.2014.3001.5501

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com