1. 工具定义
from langchain_core.tools import tool@tool
def get_weather(location: str):"""Call to get the current weather."""if location == "san francisco":raise ValueError("Input queries must be proper nouns")elif location == "San Francisco":return "It's 60 degrees and foggy."else:raise ValueError("Invalid input.")
2. 无错误处理的graph
2.1 graph 定义
from typing import Literalfrom langgraph.graph import StateGraph, MessagesState, START, END
from langgraph.prebuilt import ToolNodetool_node = ToolNode([get_weather])
from langchain_openai import ChatOpenAIllm = ChatOpenAI(temperature=0,model="GLM-4",openai_api_key="your api key",openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)
model_with_tools = llm.bind_tools([get_weather])def should_continue(state: MessagesState):messages = state["messages"]last_message = messages[-1]if last_message.tool_calls:return "tools"return ENDdef call_model(state: MessagesState):messages = state["messages"]response = model_with_tools.invoke(messages)return {"messages": [response]}workflow = StateGraph(MessagesState)# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", should_continue, ["tools", END])
workflow.add_edge("tools", "agent")app = workflow.compile()
2.2 graph 可视化
from IPython.display import Image, displaytry:display(Image(app.get_graph().draw_mermaid_png()))
except Exception:# This requires some extra dependencies and is optionalpass
2.3 错误处理
当你尝试调用工具时,可以看到模型用错误的输入调用了工具,导致工具抛出错误。预构建的ToolNode执行工具有一些内置的错误处理机制,它会捕获错误并将其传回模型,以便模型可以重试。
response = app.invoke({"messages": [("human", "what is the weather in san francisco?")]},
)for message in response["messages"]:string_representation = f"{message.type.upper()}: {message.content}\n"print(string_representation)
HUMAN: what is the weather in san francisco?AI: TOOL: Error: ValueError('Input queries must be proper nouns')Please fix your mistakes.AI: TOOL: It's 60 degrees and foggy.AI: The current weather in San Francisco is 60 degrees and foggy.
3. 具备错误处理的graph
3.1 自定义的回退策略
from langchain_core.output_parsers import StrOutputParser
from pydantic import BaseModel, Fieldclass HaikuRequest(BaseModel):topic: list[str] = Field(max_length=3,min_length=3,)@tool
def master_haiku_generator(request: HaikuRequest):"""Generates a haiku based on the provided topics."""model = ChatOpenAI(temperature=0,model="GLM-4",openai_api_key="your api key",openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)chain = model | StrOutputParser()topics = ", ".join(request.topic)haiku = chain.invoke(f"Write a haiku about {topics}")return haikutool_node = ToolNode([master_haiku_generator])llm = ChatOpenAI(temperature=0,model="GLM-4",openai_api_key="your api key",openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)model_with_tools = llm.bind_tools([master_haiku_generator])def should_continue(state: MessagesState):messages = state["messages"]last_message = messages[-1]if last_message.tool_calls:return "tools"return ENDdef call_model(state: MessagesState):messages = state["messages"]response = model_with_tools.invoke(messages)return {"messages": [response]}workflow = StateGraph(MessagesState)# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", should_continue, ["tools", END])
workflow.add_edge("tools", "agent")app = workflow.compile()response = app.invoke({"messages": [("human", "Write me an incredible haiku about water.")]},{"recursion_limit": 10},
)for message in response["messages"]:string_representation = f"{message.type.upper()}: {message.content}\n"print(string_representation)
HUMAN: Write me an incredible haiku about water.AI: TOOL: Error: 1 validation error for master_haiku_generator
request.topicInput should be a valid list [type=list_type, input_value={'Items': ['water', 'ocean', 'wave']}, input_type=dict]For further information visit https://errors.pydantic.dev/2.8/v/list_typePlease fix your mistakes.AI: TOOL: Error: 1 validation error for master_haiku_generator
request.topicInput should be a valid list [type=list_type, input_value={'Items': ['water', 'ocean', 'wave']}, input_type=dict]For further information visit https://errors.pydantic.dev/2.8/v/list_typePlease fix your mistakes.AI: TOOL: Water's embrace vast,
Ocean's salty caress,
Waves dance with the moon.AI: Here is an incredible haiku about water:Water's embrace vast,
Ocean's salty caress,
Waves dance with the moon.
3.2 使用更好的模型
import jsonfrom langchain_core.messages import AIMessage, ToolMessage
from langchain_core.messages.modifier import RemoveMessage@tool
def master_haiku_generator(request: HaikuRequest):"""Generates a haiku based on the provided topics."""from langchain_openai import ChatOpenAIllm = ChatOpenAI(temperature=0,model="GLM-4",openai_api_key="your api key",openai_api_base="https://open.bigmodel.cn/api/paas/v4/")chain = llm | StrOutputParser()topics = ", ".join(request.topic)haiku = chain.invoke(f"Write a haiku about {topics}")return haikudef call_tool(state: MessagesState):tools_by_name = {master_haiku_generator.name: master_haiku_generator}messages = state["messages"]last_message = messages[-1]output_messages = []for tool_call in last_message.tool_calls:try:tool_result = tools_by_name[tool_call["name"]].invoke(tool_call["args"])output_messages.append(ToolMessage(content=json.dumps(tool_result),name=tool_call["name"],tool_call_id=tool_call["id"],))except Exception as e:# Return the error if the tool call failsoutput_messages.append(ToolMessage(content="",name=tool_call["name"],tool_call_id=tool_call["id"],additional_kwargs={"error": e},))return {"messages": output_messages}llm = ChatOpenAI(temperature=0,model="GLM-4",openai_api_key="your api key",openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)
model_with_tools = llm.bind_tools([master_haiku_generator])
from langchain_openai import ChatOpenAIbetter_model = ChatOpenAI(temperature=0,model="GLM-4-plus",openai_api_key="your api key",openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)
better_model_with_tools = better_model.bind_tools([master_haiku_generator])def should_continue(state: MessagesState):messages = state["messages"]last_message = messages[-1]if last_message.tool_calls:return "tools"return ENDdef should_fallback(state: MessagesState,
) -> Literal["agent", "remove_failed_tool_call_attempt"]:messages = state["messages"]failed_tool_messages = [msgfor msg in messagesif isinstance(msg, ToolMessage)and msg.additional_kwargs.get("error") is not None]if failed_tool_messages:return "remove_failed_tool_call_attempt"return "agent"def call_model(state: MessagesState):messages = state["messages"]response = model_with_tools.invoke(messages)return {"messages": [response]}def remove_failed_tool_call_attempt(state: MessagesState):messages = state["messages"]# Remove all messages from the most recent# instance of AIMessage onwards.last_ai_message_index = next(ifor i, msg in reversed(list(enumerate(messages)))if isinstance(msg, AIMessage))messages_to_remove = messages[last_ai_message_index:]return {"messages": [RemoveMessage(id=m.id) for m in messages_to_remove]}# Fallback to a better model if a tool call fails
def call_fallback_model(state: MessagesState):messages = state["messages"]response = better_model_with_tools.invoke(messages)return {"messages": [response]}workflow = StateGraph(MessagesState)workflow.add_node("agent", call_model)
workflow.add_node("tools", call_tool)
workflow.add_node("remove_failed_tool_call_attempt", remove_failed_tool_call_attempt)
workflow.add_node("fallback_agent", call_fallback_model)workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", should_continue, ["tools", END])
workflow.add_conditional_edges("tools", should_fallback)
workflow.add_edge("remove_failed_tool_call_attempt", "fallback_agent")
workflow.add_edge("fallback_agent", "tools")app = workflow.compile()
可视化
try:display(Image(app.get_graph().draw_mermaid_png()))
except Exception:# This requires some extra dependencies and is optionalpass
示例
from pprint import pprint
stream = app.stream({"messages": [("human", "Write me an incredible haiku about water.")]},{"recursion_limit": 10},
)for chunk in stream:for key, value in chunk.items():# Nodepprint(f"Node '{key}':")pprint("\n---\n")
pprint(value['messages'][0].content)
"Node 'agent':"
'\n---\n'
"Node 'tools':"
'\n---\n'
"Node 'remove_failed_tool_call_attempt':"
'\n---\n'
"Node 'fallback_agent':"
'\n---\n'
"Node 'tools':"
'\n---\n'
"Node 'agent':"
'\n---\n'
('"Ripples dance, still,\\nCurrents weave through silent streams,\\nPeace in ''flow\'s embrace."')
参考链接:https://langchain-ai.github.io/langgraph/how-tos/tool-calling-errors/#custom-strategies
如果有任何问题,欢迎在评论区提问。