您的位置:首页 > 教育 > 培训 > 电商网站开发的主流技术_传智ui设计培训_app推广赚钱平台_网络营销策划方案ppt

电商网站开发的主流技术_传智ui设计培训_app推广赚钱平台_网络营销策划方案ppt

2025/9/21 9:06:56 来源:https://blog.csdn.net/yuange1666/article/details/145522804  浏览:    关键词:电商网站开发的主流技术_传智ui设计培训_app推广赚钱平台_网络营销策划方案ppt
电商网站开发的主流技术_传智ui设计培训_app推广赚钱平台_网络营销策划方案ppt

image.png

1.求偏导的意义、作用?为什么要求偏导?

偏导数帮助我们理解函数在某一个变量变化时,函数值如何变化,同时保持其他变量不变。在机器学习中,尤其是训练神经网络时,我们通过求偏导数来确定如何调整模型参数以最小化损失函数。这相当于找到损失景观中每个参数的斜率,指导我们如何调整参数以更快地达到最小损失。这对于像梯度下降这样的优化算法至关重要。

2.加法门、乘法门、激活函数门是什么?

这些是计算图中的操作:

  • 加法门 是加法操作,用于将两个或多个值相加,常见于神经网络中组合加权输入。

  • 乘法门 是乘法操作,用于将输入与权重相乘。

  • 激活函数门 是应用激活函数(如ReLU或 sigmoid),引入非线性,帮助网络学习复杂模式。

image.png

3.常见的损失函数框架都会封装好,反向传播求导先从损失函数开始?

在TensorFlow或PyTorch等框架中,反向传播从损失函数开始。框架自动计算从损失到各权重的梯度,极大简化了开发过程。

回归问题:

image.png

4.MSE:求导损失函数后,其实是求了每条样本残差的平均值?

对于均方误差(MSE),损失函数的导数相对于预测值,实际上是每条样本残差(预测值与真实值之差)的平均值。这符合MSE是 squared differences的平均值,其导数直接与残差相关。

分类问题:

image.png

5.对于MSE和交叉熵损失函数,求导(偏导)后得到的结果一样,是否意味着对于回归和分类两大类问题,除了输入的数据X的类型不一样(回归--连续型;分类--离散型),在做反向传播时的计算结构大体相近?

image.png

只能说梯度的公式一样,但是数据的类型和计算图中的网络结构、超参数什么的不太近似,如果很接近就没有对问题的区分度了

参考来源:【官方】百战程序员_IT在线教育培训机构_体系课程在线学习平台

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com