您的位置:首页 > 教育 > 锐评 > 如何建立一个微信公众号平台_网页设计总结经验_关键词挖掘工具免费_微信scrm系统

如何建立一个微信公众号平台_网页设计总结经验_关键词挖掘工具免费_微信scrm系统

2025/5/16 3:41:27 来源:https://blog.csdn.net/weixin_51524504/article/details/146103503  浏览:    关键词:如何建立一个微信公众号平台_网页设计总结经验_关键词挖掘工具免费_微信scrm系统
如何建立一个微信公众号平台_网页设计总结经验_关键词挖掘工具免费_微信scrm系统

文章目录

    • 背景介绍
    • F.nll_loss
      • 什么是负对数似然损失?
      • 应用场景
    • nn.CrossEntropyLoss
      • 简化工作流程
      • 内部机制
    • 区别与联系

背景介绍

无论是图像分类、文本分类还是其他类型的分类任务,交叉熵损失(Cross Entropy Loss)都是最常用的一种损失函数。它衡量的是模型预测的概率分布与真实标签之间的差异。在 PyTorch 中,有两个特别值得注意的实现:F.nll_lossnn.CrossEntropyLoss

F.nll_loss

什么是负对数似然损失?

F.nll_loss 是负对数似然损失(Negative Log Likelihood Loss),主要用于多类分类问题。它的输入是对数概率(log-probabilities),这意味着在使用 F.nll_loss 之前,我们需要先对模型的输出应用 log_softmax 函数,将原始输出转换为对数概率形式。

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset# 创建一些虚拟数据
features = torch.randn(100, 20)  # 假设有100个样本,每个样本有20个特征
labels = torch.randint(0, 3, (100,))  # 假设有3个类别# 创建数据加载器
dataset = TensorDataset(features, labels)
data_loader = DataLoader(dataset, batch_size=10, shuffle=True)class SimpleModel(nn.Module):def __init__(self):super(SimpleModel, self).__init__()self.fc = nn.Linear(20, 3)  # 输入维度为20,输出维度为3(对应3个类别)def forward(self, x):return self.fc(x)model_nll = SimpleModel()
optimizer = torch.optim.SGD(model_nll.parameters(), lr=0.01)for inputs, targets in data_loader:optimizer.zero_grad()  # 清除梯度outputs = model_nll(inputs)  # 模型前向传播log_softmax_outputs = F.log_softmax(outputs, dim=1)  # 应用 log_softmaxloss = F.nll_loss(log_softmax_outputs, targets)  # 计算 nll_lossloss.backward()  # 反向传播optimizer.step()  # 更新权重print(f"Batch Loss with F.nll_loss: {loss.item():.4f}")

应用场景

由于 F.nll_loss 需要预先计算 log_softmax,这为用户提供了一定程度的灵活性,尤其是在需要复用 log_softmax 结果的情况下。

nn.CrossEntropyLoss

简化工作流程

相比之下,nn.CrossEntropyLoss 更加直接和易用。它结合了 log_softmaxnll_loss 的功能,因此可以直接接受未经归一化的原始输出作为输入,内部自动完成这两个步骤。

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset# 创建一些虚拟数据
features = torch.randn(100, 20)  # 假设有100个样本,每个样本有20个特征
labels = torch.randint(0, 3, (100,))  # 假设有3个类别# 创建数据加载器
dataset = TensorDataset(features, labels)
data_loader = DataLoader(dataset, batch_size=10, shuffle=True)class SimpleModel(nn.Module):def __init__(self):super(SimpleModel, self).__init__()self.fc = nn.Linear(20, 3)  # 输入维度为20,输出维度为3(对应3个类别)def forward(self, x):return self.fc(x)model_ce = SimpleModel()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model_ce.parameters(), lr=0.01)for inputs, targets in data_loader:optimizer.zero_grad()  # 清除梯度outputs = model_ce(inputs)  # 模型前向传播loss = criterion(outputs, targets)  # 直接计算交叉熵损失,内部包含 log_softmaxloss.backward()  # 反向传播optimizer.step()  # 更新权重print(f"Batch Loss with nn.CrossEntropyLoss: {loss.item():.4f}")

内部机制

实际上,nn.CrossEntropyLoss = log_softmax + nll_loss 。这种设计简化了用户的代码编写过程,特别是当不需要对中间结果进行额外操作时。

区别与联系

  • 输入要求F.nll_loss 要求输入为 log_softmax 后的结果;而 nn.CrossEntropyLoss 可以直接接受未经 softmax 处理的原始输出。

  • 灵活性:如果需要对 log_softmax 结果进行进一步处理或调试,那么 F.nll_loss 提供了更大的灵活性。

  • 便捷性:对于大多数用户而言,nn.CrossEntropyLoss 因其简洁性和内置的 log_softmax 步骤,是更方便的选择。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com