Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 m m m 个操作分两种:
- add ( l , r , k ) \operatorname{add}(l,r,k) add(l,r,k):对每个 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 执行 a i ← a i + v a_i\gets a_i+v ai←ai+v.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 max l ≤ u < v ≤ r { ∑ i = u v v − u + 1 } \max\limits_{l\le u<v\le r}\{\dfrac{\sum\limits_{i=u}^v}{v-u+1}\} l≤u<v≤rmax{v−u+1i=u∑v},以最简分数形式输出.
Limitations
1 ≤ n , m ≤ 1 0 6 1\le n,m\le 10^6 1≤n,m≤106
∣ a i ∣ , ∣ k ∣ ≤ 1 0 3 |a_i|,|k|\le 10^3 ∣ai∣,∣k∣≤103
1 ≤ l ≤ r ≤ n 1\le l\le r\le n 1≤l≤r≤n
l ≠ r l\neq r l=r(for query \operatorname{query} query)
5 s , 512 MB 5\text{s},512\text{MB} 5s,512MB
Solution
如果没有长度大于 1 1 1 的限制,答案显然为最大值,所以我们推测:答案区间一定不会太长.
下面先证明一个引理:如果序列 a a a 能分为两个子串 b , c b,c b,c,那么 b ˉ ≥ a ˉ \bar{b}\ge\bar{a} bˉ≥aˉ 或 c ˉ ≥ a ˉ \bar{c}\ge\bar{a} cˉ≥aˉ.
考虑反证法,则有 ∑ b ∣ b ∣ , ∑ c ∣ c ∣ < ∑ a ∣ a ∣ = ∑ b + ∑ c ∣ b ∣ + ∣ c ∣ \dfrac{\sum b}{|b|},\dfrac{\sum c}{|c|}<\dfrac{\sum a}{|a|}=\dfrac{\sum b+\sum c}{|b|+|c|} ∣b∣∑b,∣c∣∑c<∣a∣∑a=∣b∣+∣c∣∑b+∑c.
交叉相乘得:
- ( ∑ b ) × ( ∣ b ∣ + ∣ c ∣ ) < ( ∑ b + ∑ c ) × ∣ b ∣ (\sum b)\times(|b|+|c|)<(\sum b+\sum c)\times|b| (∑b)×(∣b∣+∣c∣)<(∑b+∑c)×∣b∣
- ( ∑ c ) × ( ∣ b ∣ + ∣ c ∣ ) < ( ∑ b + ∑ c ) × ∣ c ∣ (\sum c)\times(|b|+|c|)<(\sum b+\sum c)\times|c| (∑c)×(∣b∣+∣c∣)<(∑b+∑c)×∣c∣
相加得 ( ∑ b + ∑ c ) × ( ∣ b ∣ + ∣ c ∣ ) < ( ∑ b + ∑ c ) × ( ∣ b ∣ + ∣ c ∣ ) (\sum b+\sum c)\times(|b|+|c|)<(\sum b+\sum c)\times(|b|+|c|) (∑b+∑c)×(∣b∣+∣c∣)<(∑b+∑c)×(∣b∣+∣c∣),矛盾.
故假设不成立,引理成立.
那么对于一个长度大于 3 3 3 的子段,一定可以将其分为两个长度大于 1 1 1 的子段,它们中至少有一个更优,所以最优的子段长度不大于 3 3 3.
知道这条就好办了,只需线段树维护区间内长度为 2 , 3 2,3 2,3 的子段最大和.
记 b i = a i + a i − 1 , c i = a i + a i − 1 + a i − 2 b_i=a_i+a_{i-1},c_i=a_i+a_{i-1}+a_{i-2} bi=ai+ai−1,ci=ai+ai−1+ai−2,用两棵线段树维护 b , c b,c b,c 即可.
add \operatorname{add} add 时细节很多,要小心,具体见代码.
时间复杂度 O ( m log n ) O(m\log n) O(mlogn).
Code
3.44 KB , 31.66 s , 115.13 MB (in total, C++20 with O2) 3.44\text{KB},31.66\text{s},115.13\text{MB}\;\texttt{(in total, C++20 with O2)} 3.44KB,31.66s,115.13MB(in total, C++20 with O2)
#include <bits/stdc++.h>
using namespace std;using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;template<class T>
bool chmax(T &a, const T &b){if(a < b){ a = b; return true; }return false;
}template<class T>
bool chmin(T &a, const T &b){if(a > b){ a = b; return true; }return false;
}constexpr i64 inf = 1e18;
namespace seg_tree {struct Node {int l, r;i64 val, tag;};inline int ls(int u) { return 2 * u + 1; }inline int rs(int u) { return 2 * u + 2; }struct SegTree {vector<Node> tr;SegTree() {}SegTree(const vector<i64> &a) {const int n = a.size();tr.resize(n << 1);build(0, 0, n - 1, a);}void apply(int u, i64 c) {tr[u].val += c;tr[u].tag += c;}void pushup(int u, int mid) {tr[u].val = max(tr[ls(mid)].val, tr[rs(mid)].val);}void pushdown(int u, int mid) {if (!tr[u].tag) return;apply(ls(mid), tr[u].tag);apply(rs(mid), tr[u].tag);tr[u].tag = 0;}void build(int u, int l, int r, const vector<i64> &a) {tr[u].l = l, tr[u].r = r, tr[u].tag = 0;if (l == r) return (void)(tr[u].val = a[l]);const int mid = (l + r) >> 1;build(ls(mid), l, mid, a);build(rs(mid), mid + 1, r, a);pushup(u, mid);}void modify(int u, int l, int r, i64 c) {if (l <= tr[u].l && tr[u].r <= r) return apply(u, c);const int mid = (tr[u].l + tr[u].r) >> 1;pushdown(u, mid);if (l <= mid) modify(ls(mid), l, r, c);if (mid < r) modify(rs(mid), l, r, c);pushup(u, mid);}i64 query(int u, int l, int r) {if (l <= tr[u].l && tr[u].r <= r) return tr[u].val;i64 ans = -inf;const int mid = (tr[u].l + tr[u].r) >> 1;pushdown(u, mid);if (l <= mid) ans = max(ans, query(ls(mid), l, r));if (mid < r) ans = max(ans, query(rs(mid), l, r));return ans; }void range_add(int l, int r, int v) { modify(0, l, r, v); }i64 range_max(int l, int r) { return query(0, l, r); }};
}
using seg_tree::SegTree;signed main() {ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);int n, m; scanf("%d %d", &n, &m);vector<i64> a(n), a2(n, -inf), a3(n, -inf);for (int i = 0; i < n; i++) {scanf("%lld", &a[i]);if (i > 0) a2[i] = a[i] + a[i - 1];if (i > 1) a3[i] = a[i] + a[i - 1] + a[i - 2];}SegTree s2(a2), s3(a3);auto query = [&](int l, int r) -> pair<i64, i64> {const i64 r2 = s2.range_max(l + 1, r);const i64 r3 = (l + 2 <= r ? s3.range_max(l + 2, r) : -inf);i64 num = (r2 * 3 > r3 * 2) ? r2 : r3;i64 den = (r2 * 3 > r3 * 2) ? 2 : 3;if (num % den == 0) num /= den, den = 1;return {num, den};};auto add = [&](int l, int r, i64 x) {s2.range_add(l, l, x);s3.range_add(l, l, x);if (l + 1 <= r) {s2.range_add(l + 1, r, x * 2);s3.range_add(l + 1, l + 1, x * 2);}if (l + 2 <= r) {s3.range_add(l + 2, r, x * 3);}if (r + 1 < n) {s2.range_add(r + 1, r + 1, x);s3.range_add(r + 1, r + 1, l == r ? x : x * 2);}if (r + 2 < n) {s3.range_add(r + 2, r + 2, x);}};for (int i = 0, op, l, r, v; i < m; i++) {scanf("%d %d %d", &op, &l, &r), l--, r--;if (op == 1) {scanf("%d", &v);add(l, r, v);}else {auto [num, den] = query(l, r);printf("%lld/%lld\n", num, den);}}return 0;
}