您的位置:首页 > 娱乐 > 明星 > 北京网站建设开发专业公司_广告设计与制作毕业论文题目_广告推广免费平台_qq群引流推广网站

北京网站建设开发专业公司_广告设计与制作毕业论文题目_广告推广免费平台_qq群引流推广网站

2025/6/7 5:26:31 来源:https://blog.csdn.net/2302_79698474/article/details/146513161  浏览:    关键词:北京网站建设开发专业公司_广告设计与制作毕业论文题目_广告推广免费平台_qq群引流推广网站
北京网站建设开发专业公司_广告设计与制作毕业论文题目_广告推广免费平台_qq群引流推广网站

第二章 插值法

插值法定义

插值函数定义

设函数 y = f ( x ) y = f(x) y=f(x) 在区间 [a,b] 上有定义,且满足节点排列:
a ≤ x 0 < x 1 < ⋯ < x n ≤ b a \leq x_0 < x_1 < \cdots < x_n \leq b ax0<x1<<xnb

已知在点 x 0 , x 1 , … , x n {x_0, x_1, \ldots, x_n} x0,x1,,xn 上的对应函数值 y 0 , y 1 , … , y n {y_0, y_1, \ldots, y_n} y0,y1,,yn

若存在一简单函数 p ( x ) p(x) p(x),满足插值条件:
p ( x i ) = y i ( i = 0 , 1 , 2 , … , n ) (2.1) p(x_i) = y_i \quad (i = 0, 1, 2, \ldots, n) \tag{2.1} p(xi)=yi(i=0,1,2,,n)(2.1) (1)

则称:

  • p ( x ) p(x) p(x) f ( x ) f(x) f(x)插值函数
  • x 0 , x 1 , … , x n {x_0, x_1, \ldots, x_n} x0,x1,,xn插值节点
  • 包含节点的区间 [a, b]为插值区间
  • 式 (1) 为插值条件
  • 求插值函数的方法称为插值法

插值函数分类

p ( x ) p(x) p(x) 具有以下形式时:

  1. 多项式插值
    p ( x ) = a _ 0 + a _ 1 x + ⋯ + a _ n x n ( a _ i ∈ R ) (2.2) p(x) = a\_0 + a\_1x + \cdots + a\_nx^n \quad (a\_i \in \mathbb{R}) \tag{2.2} p(x)=a_0+a_1x++a_nxn(a_iR)(2.2)
    其中多项式次数 ≤ n \leq n n

  2. 分段插值
    p ( x ) p(x) p(x) 为分段多项式

  3. 三角插值
    p ( x ) p(x) p(x) 为三角多项式

满足 p ( x i ) = y i , i = 0 , ⋯ n p(x_i)=y_i,i=0,\cdots n p(xi)=yi,i=0,n 次数不超过n的插值多项式是唯一存在的

拉格朗日插值

定义

n次多项式
L n ( x ) = y 0 l 0 ( x ) + y 1 l 1 ( x ) + ⋯ + y n l n ( x ) L_n(x) = y_0 l_0(x) + y_1 l_1(x) + \cdots + y_n l_n(x) Ln(x)=y0l0(x)+y1l1(x)++ynln(x)
满足插值条件:
L n ( x i ) = y i ( i = 0 , 1 , 2 , l d o t s , n ) L_n(x_i) = y_i \quad (i = 0,1,2,\\ldots,n) Ln(xi)=yi(i=0,1,2,ldots,n)

约束条件

  • 无重合节点:当 i ≠ j i \neq j i=j 时, x i ≠ x j x_i \neq x_j xi=xj

线性插值特例 ( n = 1 n=1 n=1)

已知两点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) ( x 1 , y 1 ) (x_1, y_1) (x1,y1),构造一次多项式:
L 1 ( x ) = l 0 ( x ) y 0 + l 1 ( x ) y 1 L_1(x) = l_0(x)y_0 + l_1(x)y_1 L1(x)=l0(x)y0+l1(x)y1

插值条件
{ L 1 ( x 0 ) = y 0 L 1 ( x 1 ) = y 1 \begin{cases} L_1(x_0) = y_0 \\ L_1(x_1) = y_1 \end{cases} {L1(x0)=y0L1(x1)=y1

几何意义 L 1 ( x ) L_1(x) L1(x) 是过点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) ( x 1 , y 1 ) (x_1, y_1) (x1,y1) 的直线

插值公式

L 1 ( x ) = x − x 1 x 0 − x 1 y 0 + x − x 0 x 1 − x 0 y 1 L_1(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0}y_1 L1(x)=x0x1xx1y0+x1x0xx0y1

x − x 1 x 0 − x 1 与 x − x 0 x 1 − x 0 称为拉氏基函数 \frac{x - x_1}{x_0 - x_1}与\frac{x - x_0}{x_1 - x_0}称为拉氏基函数 x0x1xx1x1x0xx0称为拉氏基函数

等价于点斜式:
L 1 ( x ) = y 0 + y 1 − y 0 x 1 − x 0 ( x − x 0 ) L_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) L1(x)=y0+x1x0y1y0(xx0)


公式说明
符号含义
l i ( x ) l_i(x) li(x)拉格朗日基函数,满足 l i ( x j ) = δ i j l_i(x_j) = \delta_{ij} li(xj)=δij
δ i j \delta_{ij} δij克罗内克函数,当 i = j i=j i=j 时为1,否则为0
x i x_i xi互不相同的插值节点

n ≥ 1 n \geq 1 n1时的插值公式

目标:希望找到 l i ( x j ) l_i(x_j) li(xj),满足下式:
l i ( x j ) = δ i j = { 1 i = j 0 i ≠ j ( i , j = 0 , 1 , … , n ) l_i(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad (i,j=0,1,\dots,n) li(xj)=δij={10i=ji=j(i,j=0,1,,n)

然后令
L n ( x ) = ∑ i = 0 n l i ( x ) y i 显然满足 L n ( x i ) = y i L_n(x) = \sum_{i=0}^n l_i(x) y_i \quad \text{显然满足} \quad L_n(x_i) = y_i Ln(x)=i=0nli(x)yi显然满足Ln(xi)=yi

  1. 零点分析
    每个基函数 l i ( x ) l_i(x) li(x) n n n 个节点处取零值:
    l i ( x j ) = 0 ( j ≠ i ) l_i(x_j) = 0 \quad (j \neq i) li(xj)=0(j=i)
    即多项式可表示为:
    l i ( x ) = C i ∏ _ j = 0 j ≠ i n ( x − x j ) l_i(x) = C_i \prod\_{\substack {j=0 \ j \neq i}}^n (x - x_j) li(x)=Ci_j=0 j=in(xxj)

  2. 归一化条件
    通过 l i ( x i ) = 1 l_i(x_i) = 1 li(xi)=1 确定常数 C i C_i Ci
    C i = 1 ∏ _ j = 0 j ≠ i n ( x i − x j ) C_i = \frac{1}{\prod\_{\substack{j=0 \ j \neq i}}^n (x_i - x_j)} Ci=_j=0 j=in(xixj)1

  3. 最终基函数表达式

l i ( x ) = ∏ j = 0 j ≠ i n x − x j x i − x j l_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j} li(x)=j=0 j=inxixjxxj

一点零次插值、线性插值、抛物插值公式

  1. 一点零次插值

条件:仅1个节点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)

多项式:
L n ( x ) = y 0 L_n(x) = y_0 Ln(x)=y0


  1. 两点一次插值(线性插值)

条件:2个节点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) ( x 1 , y 1 ) (x_1, y_1) (x1,y1)

多项式
L 1 ( x ) = x − x 1 x 0 − x 1 y 0 + x − x 0 x 1 − x 0 y 1 L_1(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 L1(x)=x0x1xx1y0+x1x0xx0y1

等价形式
L 1 ( x ) = y 0 + y 1 − y 0 x 1 − x 0 ( x − x 0 ) L_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) L1(x)=y0+x1x0y1y0(xx0)


  1. 三点二次插值(抛物插值)

条件:3个节点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) ( x 1 , y 1 ) (x_1, y_1) (x1,y1) ( x 2 , y 2 ) (x_2, y_2) (x2,y2)
多项式
L 2 ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) y 0 + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) y 1 + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) y 2 L_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2 L2(x)=(x0x1)(x0x2)(xx1)(xx2)y0+(x1x0)(x1x2)(xx0)(xx2)y1+(x2x0)(x2x1)(xx0)(xx1)y2

插值余项与误差估计

条件

  1. 函数 f ( n ) ( x ) f^{(n)}(x) f(n)(x) 在区间 [ a , b ] [a, b] [a,b] 上连续
  2. f ( n + 1 ) ( x ) f^{(n+1)}(x) f(n+1)(x) ( a , b ) (a, b) (a,b) 内存在
  3. L n ( x ) L_n(x) Ln(x) 是满足插值条件的 n n n 次多项式,插值节点为 a ≤ x 0 < x 1 < ⋯ < x n ≤ b a \leq x_0 < x_1 < \cdots < x_n \leq b ax0<x1<<xnb n + 1 n+1 n+1 个)

结论
R n ( x ) = f ( x ) − L n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∏ j = 0 n ( x − x j ) R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^n (x - x_j) Rn(x)=f(x)Ln(x)=(n+1)!f(n+1)(ξ)j=0n(xxj)
其中 ξ ∈ ( a , b ) \xi \in (a, b) ξ(a,b),且 ξ \xi ξ 的值依赖于 x x x

误差上界估计

若记 max ⁡ x ∈ [ a , b ] ∣ f ( n + 1 ) ( x ) ∣ = M n + 1 \max_{x \in [a,b]} |f^{(n+1)}(x)| = M_{n+1} maxx[a,b]f(n+1)(x)=Mn+1,则余项绝对误差满足:
∣ R n ( x ) ∣ ≤ M n + 1 ( n + 1 ) ! ⋅ ∣ ω n + 1 ( x ) ∣ |R_n(x)| \leq \frac{M_{n+1}}{(n+1)!} \cdot |\omega_{n+1}(x)| Rn(x)(n+1)!Mn+1ωn+1(x)
其中 ω n + 1 ( x ) = ∏ j = 0 n ( x − x j ) \omega_{n+1}(x) = \prod_{j=0}^n (x - x_j) ωn+1(x)=j=0n(xxj) 为节点多项式。

进一步地,节点多项式的展开形式为:
ω n + 1 ( x ) = ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) \omega_{n+1}(x) = (x - x_0)(x - x_1)\cdots(x - x_n) ωn+1(x)=(xx0)(xx1)(xxn)

节点多项式在节点 x k x_k xk 处的导数为:
ω n + 1 ′ ( x k ) = ( x k − x 0 ) ⋯ ( x k − x k − 1 ) ( x k − x k + 1 ) ⋯ ( x k − x n ) \omega'_{n+1}(x_k) = (x_k - x_0)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n) ωn+1(xk)=(xkx0)(xkxk1)(xkxk+1)(xkxn)

拉格朗日插值多项式 L n ( x ) L_n(x) Ln(x) 可表示为:
L n ( x ) = ∑ k = 0 n y k ω n + 1 ( x ) ( x − x k ) ω n + 1 ′ ( x k ) L_n(x) = \sum_{k=0}^{n} y_k \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)} Ln(x)=k=0nyk(xxk)ωn+1(xk)ωn+1(x)

  • 节点多项式 ω n + 1 ( x ) \omega_{n + 1}(x) ωn+1(x) ( n + 1 ) (n + 1) (n+1) 个线性因子的乘积。
  • 导数 ω n + 1 ′ ( x k ) \omega'_{n + 1}(x_k) ωn+1(xk) 计算时排除 ( x k − x k ) (x_k - x_k) (xkxk) 项。
  • 基函数构造 ω n + 1 ( x ) ( x − x k ) \frac{\omega_{n + 1}(x)}{(x - x_k)} (xxk)ωn+1(x) 确保在 x = x k x = x_k x=xk 时取值为 1。

n = 1 时,线性插值余项
[ R 1 ( x ) = 1 2 f ′ ′ ( ξ ) ω 2 ( x ) = 1 2 f ′ ′ ( ξ ) ( x − x 0 ) ( x − x 1 ) , ξ ∈ [ x 0 , x 1 ] ] [ R_1(x) = \frac{1}{2} f''(\xi) \omega_2(x) = \frac{1}{2} f''(\xi) (x - x_0)(x - x_1), \quad \xi \in [x_0, x_1] ] [R1(x)=21f′′(ξ)ω2(x)=21f′′(ξ)(xx0)(xx1),ξ[x0,x1]]

n = 2 时,抛物插值余项
[ R 2 ( x ) = 1 6 f ′ ′ ′ ( ξ ) ( x − x 0 ) ( x − x 1 ) ( x − x 2 ) , ξ ∈ [ x 0 , x 2 ] ] [ R_2(x) = \frac{1}{6} f'''(\xi) (x - x_0)(x - x_1)(x - x_2), \quad \xi \in [x_0, x_2] ] [R2(x)=61f′′′(ξ)(xx0)(xx1)(xx2),ξ[x0,x2]]

差商与牛顿插值

差商及其性质

差商(均差)的定义

1 阶差商
[ f [ x i , x j ] = f ( x i ) − f ( x j ) x i − x j ( i ≠ j , x i ≠ x j ) ] [ f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j} \quad (i \neq j, x_i \neq x_j) ] [f[xi,xj]=xixjf(xi)f(xj)(i=j,xi=xj)]
2 阶差商
[ f [ x i , x j , x k ] = f [ x i , x j ] − f [ x j , x k ] x i − x k ( i ≠ k ) ] [ f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k} \quad (i \neq k) ] [f[xi,xj,xk]=xixkf[xi,xj]f[xj,xk](i=k)]
k + 1 k + 1 k+1 阶差商
[ f [ x 0 , … , x k + 1 ] = f [ x 0 , x 1 , … , x k ] − f [ x 1 , … , x k , x k + 1 ] x 0 − x k + 1 = f [ x 0 , … , x k − 1 , x k ] − f [ x 0 , … , x k − 1 , x k + 1 ] x k − x k + 1 ] [ f[x_0, \ldots, x_{k + 1}] = \frac{f[x_0, x_1, \ldots, x_k] - f[x_1, \ldots, x_k, x_{k + 1}]}{x_0 - x_{k + 1}} = \frac{f[x_0, \ldots, x_{k - 1}, x_k] - f[x_0, \ldots, x_{k - 1}, x_{k + 1}]}{x_k - x_{k + 1}} ] [f[x0,,xk+1]=x0xk+1f[x0,x1,,xk]f[x1,,xk,xk+1]=xkxk+1f[x0,,xk1,xk]f[x0,,xk1,xk+1]]

k 阶差商必须由 k + 1 k + 1 k+1 个节点构成, k k k 个节点是构造不出 k k k 阶差商的。

差商的值与 x i x_i xi 顺序无关。

差商性质
  1. k 阶差商的线性组合
    k 阶差商可以表示为函数值 f ( x 0 ) , f ( x 1 ) , … , f ( x k ) f(x_0), f(x_1), \ldots, f(x_k) f(x0),f(x1),,f(xk) 的线性组合,即
    [ f [ x 0 , x 1 , … , x k ] = ∑ j = 0 k f ( x j ) ( x j − x 0 ) ⋯ ( x j − x j − 1 ) ( x j − x j + 1 ) ⋯ ( x j − x k ) (用数学归纳法证明) ] [ f[x_0, x_1, \ldots, x_k] = \sum_{j = 0}^k \frac{f(x_j)}{(x_j - x_0) \cdots (x_j - x_{j - 1})(x_j - x_{j + 1}) \cdots (x_j - x_k)} \text{(用数学归纳法证明)} ] [f[x0,x1,,xk]=j=0k(xjx0)(xjxj1)(xjxj+1)(xjxk)f(xj)(用数学归纳法证明)]

  2. 对称性
    差商具有对称性,即
    [ f [ x 0 , x 1 , … , x k ] = f [ x 1 , x 0 , x 2 , … , x k ] = ⋯ = f [ x 1 , … , x k , x 0 ] ] [ f[x_0, x_1, \ldots, x_k] = f[x_1, x_0, x_2, \ldots, x_k] = \cdots = f[x_1, \ldots, x_k, x_0] ] [f[x0,x1,,xk]=f[x1,x0,x2,,xk]==f[x1,,xk,x0]]

  3. 与导数的关系
    若函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上有 n n n 阶导数,且节点 x i ∈ [ a , b ] x_i \in [a, b] xi[a,b] i = 0 , 1 , … , n i = 0, 1, \ldots, n i=0,1,,n),则 n n n 阶差商与 n n n 阶导数有如下关系式:
    [ f [ x 0 , x 1 , … , x n ] = f ( n ) ( ξ ) n ! ] [ f[x_0, x_1, \ldots, x_n] = \frac{f^{(n)}(\xi)}{n!} ] [f[x0,x1,,xn]=n!f(n)(ξ)]
    其中 ξ ∈ [ a , b ] \xi \in [a, b] ξ[a,b]

  4. 多项式性质
    f ( x ) f(x) f(x) n n n 次多项式,则其 k k k 阶差商 f [ x 0 , x 1 , … , x k − 1 , x ] f[x_0, x_1, \ldots, x_{k - 1}, x] f[x0,x1,,xk1,x] k ≤ n k \leq n kn 时是一个 n − k n - k nk 次多项式,而当 k > n k > n k>n 时恒为零。

差商表
x i x_i xi f ( x i ) f(x_i) f(xi)一阶差商二阶差商三阶差商
x 0 x_0 x0 f ( x 0 ) f(x_0) f(x0)
x 1 x_1 x1 f ( x 1 ) f(x_1) f(x1) f [ x 0 , x 1 ] f[x_0, x_1] f[x0,x1]
x 2 x_2 x2 f ( x 2 ) f(x_2) f(x2) f [ x 1 , x 2 ] f[x_1, x_2] f[x1,x2] f [ x 0 , x 1 , x 2 ] f[x_0, x_1, x_2] f[x0,x1,x2]
x 3 x_3 x3 f ( x 3 ) f(x_3) f(x3) f [ x 2 , x 3 ] f[x_2, x_3] f[x2,x3] f [ x 1 , x 2 , x 3 ] f[x_1, x_2, x_3] f[x1,x2,x3] f [ x 0 , x 1 , x 2 , x 3 ] f[x_0, x_1, x_2, x_3] f[x0,x1,x2,x3]

牛顿插值

Newton 插值是通过选取特殊的基函数来实现的,这时,取
[ φ 0 ( x ) = 1 ] [ \varphi_0(x) = 1 ] [φ0(x)=1]
[ φ i + 1 ( x ) = ( x − x i ) φ i ( x ) , i = 0 , 1 , … , n − 1 ] [ \varphi_{i + 1}(x) = (x - x_i)\varphi_i(x), \quad i = 0, 1, \ldots, n - 1 ] [φi+1(x)=(xxi)φi(x),i=0,1,,n1]
作为 Newton 插值的以 x 0 , x 1 , … , x n x_0, x_1, \ldots, x_n x0,x1,,xn 为节点的基函数,而次数不超过 n n n 的多项式 N n ( x ) N_n(x) Nn(x) 可表示为
[ N n ( x ) = c 0 + c 1 ( x − x 0 ) + c 2 ( x − x 0 ) ( x − x 1 ) + ⋯ + c n ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n − 1 ) ] [ N_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_n(x - x_0)(x - x_1)\cdots(x - x_{n - 1}) ] [Nn(x)=c0+c1(xx0)+c2(xx0)(xx1)++cn(xx0)(xx1)(xxn1)]
其中 c 0 , c 1 , … , c n c_0, c_1, \ldots, c_n c0,c1,,cn 是待定系数。
下面推导待定系数:
f ( x 0 ) = N n ( x 0 ) = c 0 f(x_0) = N_n(x_0) = c_0 f(x0)=Nn(x0)=c0

f ( x 1 ) = N n ( x 1 ) = c 0 + c 1 ( x 1 − x 0 ) = f ( x 0 ) + c 1 ( x 1 − x 0 ) f(x_1) = N_n(x_1) = c_0 + c_1(x_1 - x_0) = f(x_0) + c_1(x_1 - x_0) f(x1)=Nn(x1)=c0+c1(x1x0)=f(x0)+c1(x1x0)

c 1 = f ( x 1 ) − f ( x 0 ) x 1 − x 0 = f [ x 0 , x 1 ] c_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f[x_0, x_1] c1=x1x0f(x1)f(x0)=f[x0,x1]

通过插值条件运用数学归纳法可以求得:
c k = f [ x 0 , x 1 , … , x k ] c_k = f[x_0, x_1, \ldots, x_k] ck=f[x0,x1,,xk]

因此,得到满足插值条件的 n n n 次插值多项式:
N n ( x ) = c 0 + c 1 ( x − x 0 ) + c 2 ( x − x 0 ) ( x − x 1 ) + ⋯ + c n ( x − x 0 ) ⋯ ( x − x n − 1 ) N_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \cdots + c_n(x - x_0)\cdots(x - x_{n-1}) Nn(x)=c0+c1(xx0)+c2(xx0)(xx1)++cn(xx0)(xxn1)

余项的推导
f ( x ) = f ( x 0 ) + ( x − x 0 ) f [ x , x 0 ] (1) f(x) = f(x_0) + (x - x_0)f[x, x_0] \quad \text{(1)} f(x)=f(x0)+(xx0)f[x,x0](1)

f [ x , x 0 ] = f [ x 0 , x 1 ] + ( x − x 1 ) f [ x , x 0 , x 1 ] (2) f[x, x_0] = f[x_0, x_1] + (x - x_1)f[x, x_0, x_1] \quad \text{(2)} f[x,x0]=f[x0,x1]+(xx1)f[x,x0,x1](2)

⋮ \vdots

f [ x , x 0 , … , x n − 1 ] = f [ x 0 , … , x n ] + ( x − x n ) f [ x , x 0 , … , x n ] (n-1) f[x, x_0, \ldots, x_{n-1}] = f[x_0, \ldots, x_n] + (x - x_n)f[x, x_0, \ldots, x_n] \quad \text{(n-1)} f[x,x0,,xn1]=f[x0,,xn]+(xxn)f[x,x0,,xn](n-1)

将上述等式依次代入并累加:
(1) + ( x − x 0 ) × (2) + ⋯ + ( x − x 0 ) ⋯ ( x − x n − 1 ) × (n-1) \text{(1)} + (x - x_0) \times \text{(2)} + \cdots + (x - x_0)\cdots(x - x_{n-1}) \times \text{(n-1)} (1)+(xx0)×(2)++(xx0)(xxn1)×(n-1)

最终得到:
f ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) + ⋯ + f [ x 0 , … , x n ] ( x − x 0 ) ⋯ ( x − x n − 1 ) + f [ x , x 0 , ⋯ , x n ] ( x − x 0 ) ⋯ ( x − x n − 1 ) ( x − x n ) f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots + f[x_0, \ldots, x_n](x - x_0)\cdots(x - x_{n-1}) + f[x, x_0, \cdots, x_n](x - x_0)\cdots(x - x_{n-1})(x - x_n) f(x)=f(x0)+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)++f[x0,,xn](xx0)(xxn1)+f[x,x0,,xn](xx0)(xxn1)(xxn)

c i = f [ x 0 , … , x i ] c_i = f[x_0, \ldots, x_i] ci=f[x0,,xi]

R n ( x ) = f [ x , x 0 , … , x n ] ( x − x 0 ) ⋯ ( x − x n − 1 ) ( x − x n ) = f [ x , x 0 , … , x n ] ω n + 1 ( x ) R_n(x) = f[x, x_0, \ldots, x_n](x - x_0)\cdots(x - x_{n-1})(x - x_n) = f[x, x_0, \ldots, x_n]\omega_{n+1}(x) Rn(x)=f[x,x0,,xn](xx0)(xxn1)(xxn)=f[x,x0,,xn]ωn+1(x)

ω n + 1 ( x ) = ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) \omega_{n+1}(x) = (x - x_0)(x - x_1)\cdots(x - x_n) ωn+1(x)=(xx0)(xx1)(xxn)

注:
由插值多项式的唯一性可知 N n ( x ) ≡ L n ( x ) N_n(x) \equiv L_n(x) Nn(x)Ln(x),故其余项也相同,即:
f [ x , x 0 , … , x n ] ω n + 1 ( x ) = f ( n + 1 ) ( ξ x ) ( n + 1 ) ! ω n + 1 ( x ) f[x, x_0, \ldots, x_n] \omega_{n+1}(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_{n+1}(x) f[x,x0,,xn]ωn+1(x)=(n+1)!f(n+1)(ξx)ωn+1(x)

进一步可得差商与导数的关系:
f [ x 0 , … , x k ] = f ( k ) ( ξ ) k ! , ξ ∈ ( x min ⁡ , x max ⁡ ) f[x_0, \ldots, x_k] = \frac{f^{(k)}(\xi)}{k!}, \quad \xi \in (x_{\min}, x_{\max}) f[x0,,xk]=k!f(k)(ξ),ξ(xmin,xmax)

差分形式的牛顿插值公式

节点等距分布条件
当节点满足等距分布时:
[ x i = x 0 + i h ( i = 0 , … , n ) ] [ x_i = x_0 + ih \quad (i = 0, \ldots, n) ] [xi=x0+ih(i=0,,n)]


向前差分
[ Δ f i = f i + 1 − f i ] [ \Delta f_i = f_{i+1} - f_i ] [Δfi=fi+1fi]
[ Δ k f i = Δ ( Δ k − 1 f i ) = Δ k − 1 f i + 1 − Δ k − 1 f i ] [ \Delta^k f_i = \Delta(\Delta^{k-1}f_i) = \Delta^{k-1}f_{i+1} - \Delta^{k-1}f_i ] [Δkfi=Δ(Δk1fi)=Δk1fi+1Δk1fi]


向后差分
[ ∇ f i = f i − f i − 1 ] [ \nabla f_i = f_i - f_{i-1} ] [fi=fifi1]
[ ∇ k f i = ∇ ( ∇ k − 1 f i ) = ∇ k − 1 f i − ∇ k − 1 f i − 1 ] [ \nabla^k f_i = \nabla(\nabla^{k-1}f_i) = \nabla^{k-1}f_i - \nabla^{k-1}f_{i-1} ] [kfi=(k1fi)=k1fik1fi1]


中心差分
[ δ f i = f i + 1 2 − f i − 1 2 其中 f i ± 1 2 = f ( x i ± h 2 ) ] [ \delta f_i = f_{i+\frac{1}{2}} - f_{i-\frac{1}{2}} \quad \text{其中} \quad f_{i\pm\frac{1}{2}} = f\left(x_i \pm \frac{h}{2}\right) ] [δfi=fi+21fi21其中fi±21=f(xi±2h)]
[ δ k f i = δ k − 1 f i + 1 2 − δ k − 1 f i − 1 2 ] [ \delta^k f_i = \delta^{k-1}f_{i+\frac{1}{2}} - \delta^{k-1}f_{i-\frac{1}{2}} ] [δkfi=δk1fi+21δk1fi21]


差分的重要性质:

  1. 差分可由函数值计算
    [ Δ n f k = ∑ j = 0 n ( − 1 ) j ( n j ) f n + k − j ] [ \Delta^n f_k = \sum_{j=0}^n (-1)^{j} \binom{n}{j} f_{n+k-j} ] [Δnfk=j=0n(1)j(jn)fn+kj]
    [ ∇ n f k = ∑ j = 0 n ( − 1 ) n − j ( n j ) f k + j − n ] [ \nabla^n f_k = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} f_{k+j-n} ] [nfk=j=0n(1)nj(jn)fk+jn]
    其中:

    • ( n j ) = n ( n − 1 ) ⋯ ( n − j + 1 ) j ! \binom{n}{j} = \frac{n(n-1)\cdots(n-j+1)}{j!} (jn)=j!n(n1)(nj+1) 是二项式系数。
  2. 函数值可由差分值算出
    [ f n + k = ∑ j = 0 n ( n j ) Δ j f k ] [ f_{n+k} = \sum_{j=0}^n \binom{n}{j} \Delta^j f_k ] [fn+k=j=0n(jn)Δjfk]

  3. 差商和差分的关系
    [ f [ x k , x k + 1 , … , x k + m ] = 1 m ! h m Δ m f k ] [ f[x_k, x_{k+1}, \ldots, x_{k+m}] = \frac{1}{m! h^m} \Delta^m f_k ] [f[xk,xk+1,,xk+m]=m!hm1Δmfk]
    [ f [ x k , x k − 1 , … , x k − m ] = 1 m ! h m ∇ m f k ] [ f[x_k, x_{k-1}, \ldots, x_{k-m}] = \frac{1}{m! h^m} \nabla^m f_k ] [f[xk,xk1,,xkm]=m!hm1mfk]

  4. 差分与导数的关系
    [ Δ n f k = h n f ( n ) ( ξ ) , ξ ∈ ( x k , x k + n ) ] [ \Delta^n f_k = h^n f^{(n)}(\xi), \quad \xi \in (x_k, x_{k+n}) ] [Δnfk=hnf(n)(ξ),ξ(xk,xk+n)]

牛顿公式:
[ N n ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + ⋯ + f [ x 0 , … , x n ] ( x − x 0 ) ⋯ ( x − x n − 1 ) ] [ N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + \cdots + f[x_0, \ldots, x_n](x - x_0)\cdots(x - x_{n-1}) ] [Nn(x)=f(x0)+f[x0,x1](xx0)++f[x0,,xn](xx0)(xxn1)]

牛顿前插公式:
x = x 0 + t h x = x_0 + th x=x0+th 0 ≤ t ≤ 1 0 \leq t \leq 1 0t1),则
[ N n ( x ) = N n ( x 0 + t h ) = ∑ k = 0 n ( t k ) Δ k f ( x 0 ) ] [ N_n(x) = N_n(x_0 + th) = \sum_{k=0}^{n} \binom{t}{k} \Delta^k f(x_0) ] [Nn(x)=Nn(x0+th)=k=0n(kt)Δkf(x0)]
余项:
[ R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! t ( t − 1 ) ⋯ ( t − n ) h n + 1 , ξ ∈ ( x 0 , x n ) ] [ R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} t(t-1)\cdots(t-n) h^{n+1}, \quad \xi \in (x_0, x_n) ] [Rn(x)=(n+1)!f(n+1)(ξ)t(t1)(tn)hn+1,ξ(x0,xn)]

牛顿后插公式:
将节点顺序倒置:
[ N n ( x ) = f ( x n ) + f [ x n , x n − 1 ] ( x − x n ) + ⋯ + f [ x n , … , x 0 ] ( x − x n ) ⋯ ( x − x 1 ) ] [ N_n(x) = f(x_n) + f[x_n, x_{n-1}](x - x_n) + \cdots + f[x_n, \ldots, x_0](x - x_n)\cdots(x - x_1) ] [Nn(x)=f(xn)+f[xn,xn1](xxn)++f[xn,,x0](xxn)(xx1)]
x = x n + t h x = x_n + th x=xn+th − 1 ≤ t ≤ 0 -1 \leq t \leq 0 1t0),则
[ N n ( x ) = N n ( x n + t h ) = ∑ k = 0 n ( − 1 ) k ( − t k ) ∇ k f ( x n ) ] [ N_n(x) = N_n(x_n + th) = \sum_{k=0}^{n} (-1)^k \binom{-t}{k} \nabla^k f(x_n) ] [Nn(x)=Nn(xn+th)=k=0n(1)k(kt)kf(xn)]
余项:
[ R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! t ( t + 1 ) ⋯ ( t + n ) h n + 1 , ξ ∈ ( x 0 , x n ) ] [ R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} t(t+1)\cdots(t+n) h^{n+1}, \quad \xi \in (x_0, x_n) ] [Rn(x)=(n+1)!f(n+1)(ξ)t(t+1)(t+n)hn+1,ξ(x0,xn)]

注: 一般当 x x x 靠近 x 0 x_0 x0 时用前插,靠近 x n x_n xn 时用后插,故两种公式亦称为表初公式和表末公式。

差分表