目录
前言
一、动态规划
1. 爬楼梯
2. 杨辉三角
3. 打家劫舍
4. 完全平方数
5. 零钱兑换
6. 单词拆分
7. 最长递增子序列
8. 乘积最大子数组
9. 分割等和子集
10. 最长有效括号
二、多维动态规划
11. 不同路径
12. 最小路径和
13. 最长回文子串
14. 最长公共子序列
15. 编辑距离
前言
一、动态规划:爬楼梯,杨辉三角,打家劫舍,完全平方数,零钱兑换,单词拆分,最长递增子序列,乘积最大子数组,分割等和子集,最长有效括号。
二、多维动态规划:不同路径,最小路径和,最长回文子串,最长公共子序列,编辑距离。
*** Trick:
动态规划步骤:1. 确定初始状态;2. 确定边界条件;3. 确定状态转移方程。
*** 常考:0-1背包问题(对应题目:9、14、15)
class Solution(object):def canPartition(self, nums):# 0-1背包问题sums = sum(nums)if sums % 2 != 0:return Falsetarget = sums // 2n = len(nums)dp = [[False] * (target+1) for _ in range(n)]dp[0][0] = Truefor i in range(1, n):dp[i][0] = Truefor j in range(1, target+1):dp[0][j] = Falsefor i in range(1, n):for j in range(1, target+1):if j >= nums[i]:dp[i][j] = dp[i-1][j] or dp[i-1][j-nums[i]]else:dp[i][j] = dp[i-1][j]return dp[n-1][target]
一、动态规划
1. 爬楼梯
原题链接:70. 爬楼梯 - 力扣(LeetCode)
# 1. 初始状态:爬到第1阶、第2届台阶的方法分别有1、2种
# 2. 确定边界条件
# 3. 动态转移方程:s(n) = s(n-1) + s(n-2)
class Solution(object):def climbStairs(self, n):s = [1, 2] if n <=2:return s[n-1]else:for i in range(2, n):s.append(s[-1]+s[-2])return s[-1]
2. 杨辉三角
原题链接:118. 杨辉三角 - 力扣(LeetCode)
# 1. 初始状态:dp = [[1] * i for i in range(1, numRows+1)]
# 2. 边界条件:2<=i<numRows, 1<=j<numRows-2
# 3. 动态转移方程:dp[i][j] = dp[i][j-1] + dp[i][j]
class Solution(object):def generate(self, numRows):dp = [[1]*i for i in range(1, numRows+1)]if i<2:return dpfor i in range(2, numRows):for j in range(1, i):dp[i][j] = dp[i-1][j-1] + dp[i-1][j]return dp
3. 打家劫舍
原题链接:198. 打家劫舍 - 力扣(LeetCode)
class Solution(object):def rob(self, nums):nums.insert(0, 0)nums.insert(1, 0)dp = [0 for i in range(len(nums))]for i in range(2, len(nums)):dp[i] = max(dp[i-1], dp[i-2]+nums[i])return dp[-1]
4. 完全平方数
原题链接:279. 完全平方数 - 力扣(LeetCode)
# 1. 初始状态:dp = [i for i in range(n+1)]
# 2. 边界条件: wihle i-j*j >=0
# 3. 动态转移方程:dp[i] = min(dp[i-j*j]+1, dp[i])
class Solution(object):def numSquares(self, n):dp = [i for i in range(n+1)]for i in range(1, n+1):j = 1while i-j*j >= 0:dp[i] = min(dp[i-j*j]+1, dp[i])j+=1return dp[-1]
5. 零钱兑换
原题链接:322. 零钱兑换 - 力扣(LeetCode)
# 1. 初始状态:dp = [float("inf")] * (amount+1)
# 2. 边界条件:i-coin[j] >=0
# 3. 状态方程:dp[i] = min(dp[i-coin[j]] + 1, dp[i]), for j in len(coins)
class Solution(object):def coinChange(self, coins, amount):dp = [float("inf")] * (amount+1)dp[0] = 0for i in range(1, amount+1):for j in range(len(coins)):if i-coins[j] >= 0:dp[i] = min(dp[i-coins[j]] + 1, dp[i])return dp[-1] if dp[-1]!=float("inf") else -1
6. 单词拆分
原题链接:139. 单词拆分 - 力扣(LeetCode)
class Solution(object):def wordBreak(self, s, wordDict):dp = [0] + [False for i in range(1, len(s)+1)]for i in range(len(s)+1):if dp[i] == True:for j in range(i+1, len(s)+1):if s[i:j] in wordDict:dp[j] = Truereturn dp[-1]
7. 最长递增子序列
原题链接:300. 最长递增子序列 - 力扣(LeetCode)
class Solution(object):def lengthOfLIS(self, nums):dp = [1 for i in range(len(nums))]for i in range(len(nums)):for j in range(i):if nums[i] > nums[j]:dp[i] = max(dp[j]+1, dp[i])return max(dp)
8. 乘积最大子数组
原题链接:152. 乘积最大子数组 - 力扣(LeetCode)
class Solution(object):def maxProduct(self, nums):# 初始状态:max_pre = min_pre = num[0]# 状态转移方程:max_pre = max(max_pre*nums[i]), min_pre*nums[i], nums[i])res = nums[0]max_pre = min_pre = nums[0]for i in range(1, len(nums)):max_pre_ = max_pre * nums[i]min_pre_ = min_pre * nums[i]max_pre = max(max_pre_, min_pre_, nums[i])min_pre = min(max_pre_, min_pre_, nums[i])res = max(res, max_pre)return res
9. 分割等和子集
原题链接:416. 分割等和子集 - 力扣(LeetCode)
class Solution(object):def canPartition(self, nums):# 0-1背包问题sums = sum(nums)if sums % 2 != 0:return Falsetarget = sums // 2n = len(nums)dp = [[False] * (target+1) for _ in range(n)]dp[0][0] = Truefor i in range(1, n):dp[i][0] = Truefor j in range(1, target+1):dp[0][j] = Falsefor i in range(1, n):for j in range(1, target+1):if j >= nums[i]:dp[i][j] = dp[i-1][j] or dp[i-1][j-nums[i]]else:dp[i][j] = dp[i-1][j]return dp[n-1][target]
10. 最长有效括号
原题链接:32. 最长有效括号 - 力扣(LeetCode)
class Solution(object):def longestValidParentheses(self, s):stack = [-1]res = 0for i in range(len(s)):if s[i] == '(':stack.append(i)else:stack.pop()if not stack:stack.append(i)else:res = max(res, i-stack[-1])return res
二、多维动态规划
11. 不同路径
原题链接:62. 不同路径 - 力扣(LeetCode)
class Solution(object):def uniquePaths(self, m, n):# 初始状态dp[i][0] = 1, dp[0][j] = 1# 状态转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]dp = [[0] * n for _ in range(m)]for i in range(m):dp[i][0] = 1for j in range(n):dp[0][j] = 1for i in range(1, m):for j in range(1, n):dp[i][j] = dp[i-1][j] + dp[i][j-1]return dp[-1][-1]
12. 最小路径和
原题链接:64. 最小路径和 - 力扣(LeetCode)
class Solution(object):def minPathSum(self, grid):# dp[i][0] = dp[i-1] + grid[i][0], dp[0][j] = dp[0][j-1] + grid[0][j]# dp[i][j] = min(dp[i-1][j] + grid[i][j], dp[i][j-1]+ grid[i][j])m, n = len(grid), len(grid[0])dp = [[0] * n for _ in range(m)]dp[0][0] = grid[0][0]for i in range(1, m):dp[i][0] = dp[i-1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j-1] + grid[0][j]for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i-1][j] + grid[i][j], dp[i][j-1]+ grid[i][j])return dp[-1][-1]
13. 最长回文子串
原题链接:5. 最长回文子串 - 力扣(LeetCode)
class Solution(object):def longestPalindrome(self, s):n = len(s)dp = [[False] * n for _ in range(n)]start, max_len = 0, 0for right in range(n):for left in range(right+1):span = right - left + 1if span == 1:dp[left][right] = Trueelif span == 2:dp[left][right] = s[left] == s[right]else:dp[left][right] = dp[left+1][right-1] and s[left] == s[right]if dp[left][right]:if span > max_len:max_len = spanstart = leftreturn s[start: start+max_len]
14. 最长公共子序列
原题链接:1143. 最长公共子序列 - 力扣(LeetCode)
class Solution(object):def longestCommonSubsequence(self, text1, text2):# 0-1 背包问题# if t1 == t2: dp[i+1][j+1] = dp[i][j] + 1# else: dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1])m, n = len(text1), len(text2)dp = [[0]* (n+1) for _ in range(m+1)]for i, t1 in enumerate(text1):for j, t2 in enumerate(text2):if t1 == t2:dp[i+1][j+1] = dp[i][j] + 1else:dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1])return dp[-1][-1]
15. 编辑距离
原题链接:72. 编辑距离 - 力扣(LeetCode)
class Solution(object):def minDistance(self, word1, word2):# 0-1 背包问题# 动态转移方程:dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) + 1分别对应插入、删除、替换操作"""0 r o s0 0 1 2 3h 1o 2r 3s 4e 5"""m, n = len(word1), len(word2)dp = [[0] * (n+1) for _ in range(m+1)]for i in range(1, m+1):dp[i][0] = ifor j in range(1, n+1):dp[0][j] = jfor i, w1 in enumerate(word1):for j, w2 in enumerate(word2):if w1 == w2:dp[i+1][j+1] = dp[i][j]else:dp[i+1][j+1] = min(dp[i+1][j], dp[i][j+1], dp[i][j]) + 1 return dp[-1][-1]