import torch import torch.nn as nn import torch.nn.functional as F import math import copy from einops import rearrangeclass SinusoidalPosEmb(nn.Module):def __init__(self, dim):super().__init__()self.dim = dimdef forward(self, x):device = x.devicehalf_dim = self.dim // 2emb = math.log(10000) / (half_dim - 1)emb = torch.exp(torch.arange(half_dim, device=device) * -emb)emb = x[:, None] * emb[None, :]emb = torch.cat((emb.sin(), emb.cos()), dim=-1)return emb# diff class ResidualConv(nn.Module): # diffdef __init__(self, in_ch, out_ch): # diffsuper(ResidualConv, self).__init__() # diffself.conv = nn.Sequential( # diffnn.Conv2d(in_ch, out_ch, 3, padding=1), # diffnn.ReLU(inplace=True), # diffnn.Conv2d(out_ch, out_ch, 3, padding=1), # diffnn.ReLU(inplace=True) # diff) # diffself.shortcut = nn.Conv2d(in_ch, out_ch, 1) # diffdef forward(self, x): # diffreturn self.conv(x) + self.shortcut(x) # diffclass up(nn.Module):def __init__(self, in_ch):super(up, self).__init__()self.up = nn.ConvTranspose2d(in_ch, in_ch // 2, 2, stride=2)def forward(self, x1, x2):x1 = self.up(x1)# input is CHWdiffY = x2.size()[2] - x1.size()[2]diffX = x2.size()[3] - x1.size()[3]x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2,diffY // 2, diffY - diffY // 2))x = x2 + x1return xclass outconv(nn.Module):def __init__(self, in_ch, out_ch):super(outconv, self).__init__()self.conv = nn.Conv2d(in_ch, out_ch, 1)def forward(self, x):x = self.conv(x)return xclass adjust_net(nn.Module):def __init__(self, out_channels=64, middle_channels=32):super(adjust_net, self).__init__()self.model = nn.Sequential(nn.Conv2d(2, middle_channels, 3, padding=1),nn.ReLU(inplace=True),nn.AvgPool2d(2),nn.Conv2d(middle_channels, middle_channels * 2, 3, padding=1),nn.ReLU(inplace=True),nn.AvgPool2d(2),nn.Conv2d(middle_channels * 2, middle_channels * 4, 3, padding=1),nn.ReLU(inplace=True),nn.AvgPool2d(2),nn.Conv2d(middle_channels * 4, out_channels * 2, 1, padding=0))def forward(self, x):out = self.model(x)out = F.adaptive_avg_pool2d(out, (1, 1))out1 = out[:, :out.shape[1] // 2]out2 = out[:, out.shape[1] // 2:]return out1, out2# The architecture of U-Net refers to "Toward Convolutional Blind Denoising of Real Photographs", # official MATLAB implementation: https://github.com/GuoShi28/CBDNet. # unofficial PyTorch implementation: https://github.com/IDKiro/CBDNet-pytorch/tree/master. # We improved it by adding time step embedding and EMM module, while removing the noise estimation network. class UNet(nn.Module):def __init__(self, in_channels=2, out_channels=1):super(UNet, self).__init__()dim = 32self.time_mlp = nn.Sequential(SinusoidalPosEmb(dim),nn.Linear(dim, dim * 4),nn.GELU(),nn.Linear(dim * 4, dim))self.inc = nn.Sequential(ResidualConv(in_channels, 64), # diffResidualConv(64, 64) # diff)self.down1 = nn.AvgPool2d(2)self.mlp1 = nn.Sequential(nn.GELU(),nn.Linear(dim, 64))self.adjust1 = adjust_net(64)self.conv1 = nn.Sequential(ResidualConv(64, 128), # diffResidualConv(128, 128), # diffResidualConv(128, 128) # diff)self.down2 = nn.AvgPool2d(2)self.mlp2 = nn.Sequential(nn.GELU(),nn.Linear(dim, 128))self.adjust2 = adjust_net(128)self.conv2 = nn.Sequential(ResidualConv(128, 256), # diffResidualConv(256, 256), # diffResidualConv(256, 256), # diffResidualConv(256, 256), # diffResidualConv(256, 256), # diffResidualConv(256, 256) # diff)self.up1 = up(256)self.mlp3 = nn.Sequential(nn.GELU(),nn.Linear(dim, 128))self.adjust3 = adjust_net(128)self.conv3 = nn.Sequential(ResidualConv(128, 128), # diffResidualConv(128, 128), # diffResidualConv(128, 128) # diff)self.up2 = up(128)self.mlp4 = nn.Sequential(nn.GELU(),nn.Linear(dim, 64))self.adjust4 = adjust_net(64)self.conv4 = nn.Sequential(ResidualConv(64, 64), # diffResidualConv(64, 64) # diff)self.outc = outconv(64, out_channels)def forward(self, x, t, x_adjust, adjust):inx = self.inc(x)time_emb = self.time_mlp(t)down1 = self.down1(inx)condition1 = self.mlp1(time_emb)b, c = condition1.shapecondition1 = rearrange(condition1, 'b c -> b c 1 1')if adjust:gamma1, beta1 = self.adjust1(x_adjust)down1 = down1 + gamma1 * condition1 + beta1else:down1 = down1 + condition1conv1 = self.conv1(down1)down2 = self.down2(conv1)condition2 = self.mlp2(time_emb)b, c = condition2.shapecondition2 = rearrange(condition2, 'b c -> b c 1 1')if adjust:gamma2, beta2 = self.adjust2(x_adjust)down2 = down2 + gamma2 * condition2 + beta2else:down2 = down2 + condition2conv2 = self.conv2(down2)up1 = self.up1(conv2, conv1)condition3 = self.mlp3(time_emb)b, c = condition3.shapecondition3 = rearrange(condition3, 'b c -> b c 1 1')if adjust:gamma3, beta3 = self.adjust3(x_adjust)up1 = up1 + gamma3 * condition3 + beta3else:up1 = up1 + condition3conv3 = self.conv3(up1)up2 = self.up2(conv3, inx)condition4 = self.mlp4(time_emb)b, c = condition4.shapecondition4 = rearrange(condition4, 'b c -> b c 1 1')if adjust:gamma4, beta4 = self.adjust4(x_adjust)up2 = up2 + gamma4 * condition4 + beta4else:up2 = up2 + condition4conv4 = self.conv4(up2)out = self.outc(conv4)return outclass Network(nn.Module):def __init__(self, in_channels=3, out_channels=1, context=True):super(Network, self).__init__()self.unet = UNet(in_channels=in_channels, out_channels=out_channels)self.context = contextdef forward(self, x, t, y, x_end, adjust=True):if self.context:x_middle = x[:, 1].unsqueeze(1)else:x_middle = xx_adjust = torch.cat((y, x_end), dim=1)out = self.unet(x, t, x_adjust, adjust=adjust) + x_middlereturn out# WeightNet of the one-shot learning framework class WeightNet(nn.Module):def __init__(self, weight_num=10):super(WeightNet, self).__init__()init = torch.ones([1, weight_num, 1, 1]) / weight_numself.weights = nn.Parameter(init)def forward(self, x):weights = F.softmax(self.weights, 1)out = weights * xout = out.sum(dim=1, keepdim=True)return out, weights