您的位置:首页 > 游戏 > 手游 > 青海建筑人才网_知名企业破产_企业培训内容包括哪些内容_营销培训课程ppt

青海建筑人才网_知名企业破产_企业培训内容包括哪些内容_营销培训课程ppt

2025/5/15 4:18:26 来源:https://blog.csdn.net/weixin_ggwwsscc/article/details/146468803  浏览:    关键词:青海建筑人才网_知名企业破产_企业培训内容包括哪些内容_营销培训课程ppt
青海建筑人才网_知名企业破产_企业培训内容包括哪些内容_营销培训课程ppt

数字人直播系统涉及自然语言处理、语音合成、图形渲染、直播推流等多领域技术,要实现完整功能需多模块协同。以下代码在之前基础上全面升级,使用 Python 结合多个库,涵盖语音交互、智能回复、唇形同步、表情动作模拟、直播推流(以 B 站为例)等核心功能。运行代码前,需安装SpeechRecognitiontransformersgTTSmoviepyopencv - pythonpytubebili - live - danmaku等库,安装命令为pip install SpeechRecognition transformers gTTS moviepy opencv - python pytube bili - live - danmaku

import speech_recognition as sr​

from transformers import AutoTokenizer, AutoModelForCausalLM​

from gtts import gTTS​

from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, vfx​

import os​

import numpy as np​

import cv2​

from pytube import YouTube​

from bilibili_api import live, sync​

# 语音识别函数​

def recognize_speech():​

r = sr.Recognizer()​

with sr.Microphone() as source:​

print("请说话...")​

audio = r.listen(source)​

try:​

text = r.recognize_google(audio)​

print(f"识别到的内容: {text}")​

return text​

except sr.UnknownValueError:​

print("无法识别语音")​

return ""​

except sr.RequestError as e:​

print(f"请求错误; {e}")​

return ""​

# 自然语言理解与回复生成函数​

def generate_response(user_input):​

tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT - medium")​

model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT - medium")​

input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')​

output = model.generate(input_ids=input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)​

response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)​

return response​

# 语音合成并返回音频文件路径​

def text_to_speech(text, lang='zh - CN'):​

tts = gTTS(text=text, lang=lang)​

tts.save("response.mp3")​

return "response.mp3"​

# 唇形同步模拟,根据语音时长和音素特征调整视频帧(更复杂版本)​

def lip_sync_video(video_path, audio_path):​

video = VideoFileClip(video_path)​

audio = AudioFileClip(audio_path)​

video_duration = video.duration​

audio_duration = audio.duration​

# 简单的音素分析模拟(实际需要更专业的音素分析库)​

# 这里假设每个单词对应一个音素变化,根据单词数量调整视频帧​

words = audio.reader.get_metadata()['duration'] / 1000​

num_words = len(words.split())​

if video_duration > audio_duration:​

new_fps = video.fps * (audio_duration / video_duration)​

new_video = video.set_fps(new_fps)​

new_video = new_video.set_duration(audio_duration)​

else:​

new_video = video.set_duration(audio_duration)​

# 模拟根据音素调整嘴唇动作(简单缩放视频帧中嘴唇部分)​

def adjust_lips(frame):​

height, width, _ = frame.shape​

lips_y = int(height * 0.6)​

lips_height = int(height * 0.2)​

lips_frame = frame[lips_y:lips_y + lips_height, :]​

resized_lips = cv2.resize(lips_frame, None, fx=(1 + num_words / 10), fy=1)​

frame[lips_y:lips_y + resized_lips.shape[0], :] = resized_lips​

return frame​

new_video = new_video.fl(adjust_lips)​

new_video.write_videofile("lipsynced_video.mp4", codec='libx264')​

return "lipsynced_video.mp4"​

# 模拟数字人表情和动作,结合语音情感分析(简单模拟)​

def simulate_digital_human_expression_and_action(video_path, audio_path):​

video = VideoFileClip(video_path)​

audio = AudioFileClip(audio_path)​

audio_duration = audio.duration​

# 简单的语音情感分析模拟(实际需专业情感分析库)​

# 这里根据音频音量判断情感,音量高假设为积极情感​

audio_data = audio.to_soundarray(fps=audio.fps)​

max_volume = np.max(np.abs(audio_data))​

if max_volume > 0.5: # 假设0.5为积极情感阈值​

def happy_action(frame):​

# 简单旋转视频表示开心动作​

height, width, _ = frame.shape​

M = cv2.getRotationMatrix2D((width / 2, height / 2), 10, 1.1)​

return cv2.warpAffine(frame, M, (width, height))​

new_video = video.fl(happy_action)​

else:​

new_video = video​

new_video.write_videofile("expression_and_action_simulated_video.mp4", codec='libx264')​

return "expression_and_action_simulated_video.mp4"​

# 获取直播源视频(以YouTube为例)​

def get_live_source_video(youtube_url):​

yt = YouTube(youtube_url)​

stream = yt.streams.filter(file_extension='mp4', adaptive=True).first()​

stream.download(filename='live_source_video.mp4')​

return 'live_source_video.mp4'​

# B站直播推流函数(需自行替换房间号和直播密钥等信息)​

async def bili_live_push(video_path):​

room = live.LiveDanmaku(room_id=123456) # 替换为实际房间号​

await room.connect()​

cap = cv2.VideoCapture(video_path)​

while cap.isOpened():​

ret, frame = cap.read()​

if not ret:​

break​

frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)​

await room.send_danmaku("这是直播内容") # 可根据需求发送弹幕​

await room.send_frame(frame)​

cap.release()​

await room.close()​

# 主函数,整合所有功能​

def main():​

youtube_url = "https://www.youtube.com/watch?v=xxxxxxx" # 替换为实际YouTube直播链接​

live_source_video_path = get_live_source_video(youtube_url)​

user_input = recognize_speech()​

while user_input.lower() != "退出":​

response = generate_response(user_input)​

print(f"数字人回复: {response}")​

audio_path = text_to_speech(response)​

video_path = live_source_video_path​

synced_video_path = lip_sync_video(video_path, audio_path)​

expression_and_action_path = simulate_digital_human_expression_and_action(synced_video_path, audio_path)​

sync(bili_live_push(expression_and_action_path))​

os.remove(audio_path)​

os.remove(synced_video_path)​

os.remove(expression_and_action_path)​

user_input = recognize_speech()​

if __name__ == "__main__":​

main()

这段代码对唇形同步和表情动作模拟进行了更深入的处理,虽仍为简化版模拟,但相比之前更加完善。在实际应用中,如需更逼真的数字人效果,需要使用专业的图形引擎(如 Unity、Unreal Engine),结合动作捕捉、面部识别等技术进行开发。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com