您的位置:首页 > 文旅 > 旅游 > html网页生成工具_永久的海外域名_信息流优化师是干什么的_搜狗网站

html网页生成工具_永久的海外域名_信息流优化师是干什么的_搜狗网站

2025/7/4 9:09:59 来源:https://blog.csdn.net/weixin_42193791/article/details/143652566  浏览:    关键词:html网页生成工具_永久的海外域名_信息流优化师是干什么的_搜狗网站
html网页生成工具_永久的海外域名_信息流优化师是干什么的_搜狗网站

本篇文章详细介绍了如何使用 PyTorch 实现经典卷积神经网络 AlexNet,并利用 Fashion-MNIST 数据集进行训练与测试。在训练完成后,通过 TensorRT 进行推理加速,以提升模型的推理效率。
本文全部代码链接:全部代码下载

环境配置

为了保证代码在 GPU 环境下顺利运行,我们将安装兼容 CUDA 11.3 的 PyTorch 版本。请使用以下命令安装 PyTorch、Torchvision 和 Torchaudio:

!pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113

为确保兼容性,还可以使用特定版本的 numpy:

!pip install numpy==1.23.0

数据加载与预处理

我们将使用 torchvision.datasets.FashionMNIST 加载 Fashion-MNIST 数据集,并对数据进行标准化处理。

将图像转换为张量
归一化图像到 [-1, 1]

from torchvision import datasets, transforms
from torch.utils.data import DataLoader

定义数据预处理

transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))  # 归一化到 [-1, 1]
])

加载数据集

train_dataset = datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform)

定义数据加载器

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)

AlexNet 模型定义

AlexNet 是一种包含 5 层卷积层和 3 层全连接层的经典深度卷积神经网络。以下代码展示了如何使用 PyTorch 实现 AlexNet 的结构。

import torch.nn as nn
import torch.nn.functional as Fclass AlexNet(nn.Module):def __init__(self):super(AlexNet, self).__init__()self.conv1 = nn.Conv2d(in_channels=1, out_channels=96, kernel_size=11, stride=4, padding=1)self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2)self.conv2 = nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, stride=1, padding=2)self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com