您的位置:首页 > 文旅 > 旅游 > SQL中的聚合方法与Pandas的对应关系

SQL中的聚合方法与Pandas的对应关系

2025/7/13 0:59:19 来源:https://blog.csdn.net/TalorSwfit20111208/article/details/141269160  浏览:    关键词:SQL中的聚合方法与Pandas的对应关系

在SQL和Pandas中,聚合方法是用来对数据进行汇总统计的重要工具。下面是SQL中的各种聚合方法及其与Pandas中相应操作的对应关系:

1. COUNT

  • SQL:

    • COUNT(*) 返回表中的行数。
    • COUNT(column) 返回指定列中非空值的数量。
  • Pandas:

    • count() 方法用于计算非空值的数量。
    • 示例代码:
      count_result = df['column'].count()
      

2. SUM

  • SQL:

    • SUM(column) 返回指定列中所有值的总和。
  • Pandas:

    • sum() 方法用于计算指定列中所有值的总和。
    • 示例代码:
      sum_result = df['column'].sum()
      

3. AVG / AVERAGE

  • SQL:

    • AVG(column) 返回指定列中所有值的平均值。
  • Pandas:

    • mean() 方法用于计算指定列中所有值的平均值。
    • 示例代码:
      avg_result = df['column'].mean()
      

4. MIN

  • SQL:

    • MIN(column) 返回指定列中的最小值。
  • Pandas:

    • min() 方法用于计算指定列中的最小值。
    • 示例代码:
      min_result = df['column'].min()
      

5. MAX

  • SQL:

    • MAX(column) 返回指定列中的最大值。
  • Pandas:

    • max() 方法用于计算指定列中的最大值。
    • 示例代码:
      max_result = df['column'].max()
      

6. GROUP BY

  • SQL:

    • GROUP BY column 用于对指定列中的值进行分组。
    • 可以结合 COUNT, SUM, AVG, MIN, MAX 等聚合函数一起使用。
  • Pandas:

    • groupby() 方法用于对DataFrame中的数据进行分组。
    • 可以结合 count(), sum(), mean(), min(), max() 等方法一起使用。
    • 示例代码:
      grouped_df = df.groupby('column').agg({'other_column': 'sum'})
      

7. DISTINCT

  • SQL:

    • DISTINCT column 返回指定列中的唯一值。
  • Pandas:

    • unique() 方法用于获取指定列中的唯一值。
    • 示例代码:
      unique_values = df['column'].unique()
      

8. HAVING

  • SQL:

    • HAVING condition 用于过滤 GROUP BY 后的结果集。
  • Pandas:

    • 没有直接对应的 having 方法,但可以使用 groupby() 结合 filter() 方法来实现类似功能。
    • 示例代码:
      filtered_df = df.groupby('column').filter(lambda x: x['other_column'].sum() > threshold)
      

示例代码

假设我们有一个DataFrame df,我们将演示这些聚合操作:

import pandas as pd# 创建示例 DataFrame
data = {'category': ['A', 'B', 'A', 'B', 'A', 'B'],'value': [10, 20, 30, 40, 50, 60]
}
df = pd.DataFrame(data)# COUNT
count_result = df['category'].count()
print("COUNT:")
print(count_result)# SUM
sum_result = df['value'].sum()
print("\nSUM:")
print(sum_result)# AVG / AVERAGE
avg_result = df['value'].mean()
print("\nAVG:")
print(avg_result)# MIN
min_result = df['value'].min()
print("\nMIN:")
print(min_result)# MAX
max_result = df['value'].max()
print("\nMAX:")
print(max_result)# GROUP BY
grouped_df = df.groupby('category').agg({'value': ['sum', 'mean', 'min', 'max']})
print("\nGROUP BY:")
print(grouped_df)# DISTINCT
unique_categories = df['category'].unique()
print("\nDISTINCT:")
print(unique_categories)# HAVING
threshold = 50
filtered_df = df.groupby('category').filter(lambda x: x['value'].sum() > threshold)
print("\nHAVING:")
print(filtered_df)

输出示例

假设DataFrame如下所示:

  category  value
0        A     10
1        B     20
2        A     30
3        B     40
4        A     50
5        B     60

输出结果将会是:

COUNT:
6SUM:
210AVG:
35.0MIN:
10MAX:
60GROUP BY:value        sum mean min max
category                 
A           90  30.0  10  50
B          120  40.0  20  60DISTINCT:
['A' 'B']HAVING:category  value
0        A     10
2        A     30
4        A     50
1        B     20
3        B     40
5        B     60

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com