您的位置:首页 > 新闻 > 热点要闻 > 成都网站设计建设_产品网站推广方案_自己做网站_免费的网站

成都网站设计建设_产品网站推广方案_自己做网站_免费的网站

2025/10/15 2:50:15 来源:https://blog.csdn.net/D5486789_/article/details/143118806  浏览:    关键词:成都网站设计建设_产品网站推广方案_自己做网站_免费的网站
成都网站设计建设_产品网站推广方案_自己做网站_免费的网站

目录

1.堆排序的思想

2.堆排序的实现

建堆

向上调整建堆

向下调整建堆

选数

堆排序实现代码

3.堆排序总结


1.堆排序的思想

堆排序是利用堆这种数据结构设计的排序算法,更准确的说,是利用堆的删除操作所设计的一种排序算法。

比如:删除堆顶元素的时候,我们使用的是替换法删除,也就是将堆顶元素和数组末尾的元素交换,每次选择的堆顶元素是堆中当前的最大or最小元素。相当于每次都能在待排序序列中选出一个最值,从后往前填入数组中的一个正确位置。

  • 如果是大堆,每次选出的数据就是当前堆中最大的元素,从数组后面往前填入数组,排出来的数据是升序的。
  • 如果是小堆,每次选出的数据就是当前堆中最小的元素,从数组后面往前填入数组,排出来的数据是降序的。

所以,如果我们想排升序,建堆的时候,应该建立大堆;如果我们想排降序,建堆的时候,应该建立小堆

2.堆排序的实现

堆排序的实现主要分为两步:建堆选数。

建堆

堆排序是在堆这种数据结构的基础上进行的,所以想要进行堆排序必须先建堆。建堆方式分为两种,一种是向上调整建堆,一种是向下调整建堆。

向上调整建堆

向上调整前提是当前调整的数据 前面的数据构成堆。所以,向上调整建堆的顺序应该从上往下、从左往右依次进行向上调整。一个数据通过向上调整建堆最多调整树的高度减1次,也就是logN,一共N个数据,所以向上调整建堆的时间复杂度是O(N*logN)

向下调整建堆

向下调整前提是左右子树都是堆,也就是当前数据后面的数据是堆。所以,向下调整建堆的顺序应该从右往左、从下往上依次进行。因为,叶子结点没有孩子,所以应该从倒数第一个非叶子结点开始进行向下调整

向下调整建堆代码:

void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){// 找出小的那个孩子if (child + 1 < n && a[child + 1] > a[child]){++child;}if (a[child] > a[parent]){swap(&a[child], &a[parent]);// 继续往下调整parent = child;child = parent * 2 + 1;}else{break;}}
}

向下调整建堆时间复杂度分析:

向下调整建堆的时间复杂度为O(N),要优于向上调整建堆,所以我们采用向下调整建堆。 

选数

所谓选数,就是每次都选择堆顶元素,然后将堆顶元素和数组未排序空间的最后一个元素交换,每次选择的堆顶元素是堆中当前的最大or最小元素。相当于每次都能在待排序序列中选出一个最值,从后往前填入数组中的一个正确位置。

流程图如下所示:

堆排序实现代码

#include <stdio.h>void swap(int* p1, int *p2)
{int t = *p1;*p1 = *p2;*p2 = t;
}void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){// 找出小的那个孩子if (child + 1 < n && a[child + 1] > a[child]){++child;}if (a[child] > a[parent]){swap(&a[child], &a[parent]);// 继续往下调整parent = child;child = parent * 2 + 1;}else{break;}}
}void HeapSort(int* a, int n)
{// 向下调整建堆// O(N)for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a, n, i);}// O(N*logN)int end = n - 1;while (end > 0){swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}
}int main()
{int nums[] = {5,4,8,9,6,3,2,1,7,0};HeapSort(nums,10);int i = 0;while(i < sizeof(nums) / sizeof(int)){printf("%d ",nums[i]);i++;}return 0;
}

3.堆排序总结

  • 时间复杂度:O(N*logN)。采用向下调整建堆,时间复杂度为O(N);逐元素进行向下调整,时间复杂度为log(N);所以总的时间复杂度为O(N*logN)。
  • 空间复杂度:O(1)。并没有开辟额外的空间,时间复杂度为O(1)。
  • 稳定性:不稳定,如图所示。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com