您的位置:首页 > 新闻 > 热点要闻 > 冬季黄山旅游攻略_莱芜在线论坛话题牛泉镇_b2b电子商务网_百度seo排名点击器app

冬季黄山旅游攻略_莱芜在线论坛话题牛泉镇_b2b电子商务网_百度seo排名点击器app

2025/7/3 13:22:49 来源:https://blog.csdn.net/qq_45931691/article/details/143010255  浏览:    关键词:冬季黄山旅游攻略_莱芜在线论坛话题牛泉镇_b2b电子商务网_百度seo排名点击器app
冬季黄山旅游攻略_莱芜在线论坛话题牛泉镇_b2b电子商务网_百度seo排名点击器app

文章目录

    • BaseTool 源码分析
      • 核心属性
        • 以 `TavilySearchResults(BaseTool)` 为例
          • name
          • description
          • args_schema
          • response_format
          • 查询选项属性
      • 需要子类实现的抽象方法
        • 以 `TavilySearchResults(BaseTool)` 为例
      • 核心方法
        • `arun()`:`run()`的异步执行版本
        • `invoke()`和`ainvoke()`

BaseTool 源码分析

BaseTool 是 LangChain 框架中定义 tools 的模板类

核心属性

  • name表示 tool 唯一名称的字符串(用于识别)
  • description:对如何 / 何时 / 为何使用该 tool 的描述,帮助模型决定什么时候调用该 tool
  • args_schema:验证工具输入参数的 Pydantic model 或 schema
  • return_direct:如果为True,则立即返回 tool 的输出
  • responcse_format:定义 tool 的响应格式
TavilySearchResults(BaseTool) 为例
name
name: str = "tavily_search_results_json"
description
    description: str = ("A search engine optimized for comprehensive, accurate, and trusted results. ""Useful for when you need to answer questions about current events. ""Input should be a search query.")
args_schema
class TavilyInput(BaseModel):"""Input for the Tavily tool."""query: str = Field(description="search query to look up")# 输入将遵循 TavilyInput 类中定义的架构规则
# 同时args_schema的值必须是BaseModel派生类
args_schema: Type[BaseModel] = TavilyInput
  • 按照TavilyInput的规则,如果输入没有提供query值,将抛出一个验证错误
  • Field函数用于向字段添加元数据(描述)
response_format
response_format: Literal["content_and_artifact"] = "content_and_artifact"
  • 使用 Literal 来确保某些值被限制为特定文字
@_LiteralSpecialForm
@_tp_cache(typed=True)
def Literal(self, *parameters):"""Special typing form to define literal types (a.k.a. value types).This form can be used to indicate to type checkers that the correspondingvariable or function parameter has a value equivalent to the providedliteral (or one of several literals):def validate_simple(data: Any) -> Literal[True]:  # always returns True...MODE = Literal['r', 'rb', 'w', 'wb']def open_helper(file: str, mode: MODE) -> str:...open_helper('/some/path', 'r')  # Passes type checkopen_helper('/other/path', 'typo')  # Error in type checkerLiteral[...] cannot be subclassed. At runtime, an arbitrary valueis allowed as type argument to Literal[...], but type checkers mayimpose restrictions."""# There is no '_type_check' call because arguments to Literal[...] are# values, not types.parameters = _flatten_literal_params(parameters)try:parameters = tuple(p for p, _ in _deduplicate(list(_value_and_type_iter(parameters))))except TypeError:  # unhashable parameterspassreturn _LiteralGenericAlias(self, parameters)
查询选项属性
  • **max_results:返回的最大结果数量,默认为 5。
  • **search_depth:查询的深度,可以是 "basic""advanced",默认是 "advanced"
  • **include_domains:一个包含在结果中的域名列表(默认为空,即包含所有域名)。
  • exclude_domains:一个排除在结果之外的域名列表。
  • include_answer:是否在结果中包含简短答案,默认值为 False
  • include_raw_content:是否返回 HTML 原始内容的解析结果(默认关闭)。
  • include_images:是否在结果中包含相关图片,默认值为 False

需要子类实现的抽象方法

    @abstractmethoddef _run(self, *args: Any, **kwargs: Any) -> Any:"""Use the tool.Add run_manager: Optional[CallbackManagerForToolRun] = Noneto child implementations to enable tracing."""
TavilySearchResults(BaseTool) 为例
api_wrapper: TavilySearchAPIWrapper = Field(default_factory=TavilySearchAPIWrapper)  # type: ignore[arg-type]
  • api_wrapper 是一个 TavilySearchAPIWrapper 实例,用于封装 API 调用的细节
class TavilySearchAPIWrapper(BaseModel):"""Wrapper for Tavily Search API."""tavily_api_key: SecretStrmodel_config = ConfigDict(extra="forbid",)@model_validator(mode="before")@classmethoddef validate_environment(cls, values: Dict) -> Any:"""Validate that api key and endpoint exists in environment."""tavily_api_key = get_from_dict_or_env(values, "tavily_api_key", "TAVILY_API_KEY")values["tavily_api_key"] = tavily_api_keyreturn valuesdef raw_results(self,query: str,max_results: Optional[int] = 5,search_depth: Optional[str] = "advanced",include_domains: Optional[List[str]] = [],exclude_domains: Optional[List[str]] = [],include_answer: Optional[bool] = False,include_raw_content: Optional[bool] = False,include_images: Optional[bool] = False,) -> Dict:params = {"api_key": self.tavily_api_key.get_secret_value(),"query": query,"max_results": max_results,"search_depth": search_depth,"include_domains": include_domains,"exclude_domains": exclude_domains,"include_answer": include_answer,"include_raw_content": include_raw_content,"include_images": include_images,}response = requests.post(# type: ignoref"{TAVILY_API_URL}/search",json=params,)response.raise_for_status()return response.json()def results(self,query: str,max_results: Optional[int] = 5,search_depth: Optional[str] = "advanced",include_domains: Optional[List[str]] = [],exclude_domains: Optional[List[str]] = [],include_answer: Optional[bool] = False,include_raw_content: Optional[bool] = False,include_images: Optional[bool] = False,) -> List[Dict]:"""Run query through Tavily Search and return metadata.Args:query: The query to search for.max_results: The maximum number of results to return.search_depth: The depth of the search. Can be "basic" or "advanced".include_domains: A list of domains to include in the search.exclude_domains: A list of domains to exclude from the search.include_answer: Whether to include the answer in the results.include_raw_content: Whether to include the raw content in the results.include_images: Whether to include images in the results.Returns:query: The query that was searched for.follow_up_questions: A list of follow up questions.response_time: The response time of the query.answer: The answer to the query.images: A list of images.results: A list of dictionaries containing the results:title: The title of the result.url: The url of the result.content: The content of the result.score: The score of the result.raw_content: The raw content of the result."""raw_search_results = self.raw_results(query,max_results=max_results,search_depth=search_depth,include_domains=include_domains,exclude_domains=exclude_domains,include_answer=include_answer,include_raw_content=include_raw_content,include_images=include_images,)return self.clean_results(raw_search_results["results"])async def raw_results_async(self,query: str,max_results: Optional[int] = 5,search_depth: Optional[str] = "advanced",include_domains: Optional[List[str]] = [],exclude_domains: Optional[List[str]] = [],include_answer: Optional[bool] = False,include_raw_content: Optional[bool] = False,include_images: Optional[bool] = False,) -> Dict:"""Get results from the Tavily Search API asynchronously."""# Function to perform the API callasync def fetch() -> str:params = {"api_key": self.tavily_api_key.get_secret_value(),"query": query,"max_results": max_results,"search_depth": search_depth,"include_domains": include_domains,"exclude_domains": exclude_domains,"include_answer": include_answer,"include_raw_content": include_raw_content,"include_images": include_images,}async with aiohttp.ClientSession() as session:async with session.post(f"{TAVILY_API_URL}/search", json=params) as res:if res.status == 200:data = await res.text()return dataelse:raise Exception(f"Error {res.status}: {res.reason}")results_json_str = await fetch()return json.loads(results_json_str)async def results_async(self,query: str,max_results: Optional[int] = 5,search_depth: Optional[str] = "advanced",include_domains: Optional[List[str]] = [],exclude_domains: Optional[List[str]] = [],include_answer: Optional[bool] = False,include_raw_content: Optional[bool] = False,include_images: Optional[bool] = False,) -> List[Dict]:results_json = await self.raw_results_async(query=query,max_results=max_results,search_depth=search_depth,include_domains=include_domains,exclude_domains=exclude_domains,include_answer=include_answer,include_raw_content=include_raw_content,include_images=include_images,)return self.clean_results(results_json["results"])def clean_results(self, results: List[Dict]) -> List[Dict]:"""Clean results from Tavily Search API."""clean_results = []for result in results:clean_results.append({"url": result["url"],"content": result["content"],})return clean_results
  • raw_results():同步调用 API。
  • raw_results_async():异步调用 API。
  • clean_results():清理和格式化查询结果。
    def _run(self,query: str,run_manager: Optional[CallbackManagerForToolRun] = None,) -> Tuple[Union[List[Dict[str, str]], str], Dict]:"""Use the tool."""# TODO: remove try/except, should be handled by BaseTooltry:raw_results = self.api_wrapper.raw_results(query,self.max_results,self.search_depth,self.include_domains,self.exclude_domains,self.include_answer,self.include_raw_content,self.include_images,)except Exception as e:return repr(e), {}return self.api_wrapper.clean_results(raw_results["results"]), raw_results
  • 传入查询参数,调用 TavilySearchAPIWrapper 来获取结果。
  • 如果查询失败,则返回错误信息。

核心方法

arun()run()的异步执行版本
    async def _arun(self, *args: Any, **kwargs: Any) -> Any:"""Use the tool asynchronously.Add run_manager: Optional[AsyncCallbackManagerForToolRun] = Noneto child implementations to enable tracing."""if kwargs.get("run_manager") and signature(self._run).parameters.get("run_manager"):kwargs["run_manager"] = kwargs["run_manager"].get_sync()return await run_in_executor(None, self._run, *args, **kwargs)
  • 若具有run_manager参数,则转换为同步版本,然后使用默认执行器异步运行 self._run 方法
  • run_in_executor 是一个异步执行器,它允许你在不同的执行器中运行同步代码,而不会阻塞当前的事件循环
invoke()ainvoke()
def invoke(self,input: Union[str, dict, ToolCall],config: Optional[RunnableConfig] = None,**kwargs: Any,
) -> Any:tool_input, kwargs = _prep_run_args(input, config, **kwargs)return self.run(tool_input, **kwargs)async def ainvoke(self,input: Union[str, dict, ToolCall],config: Optional[RunnableConfig] = None,**kwargs: Any,
) -> Any:tool_input, kwargs = _prep_run_args(input, config, **kwargs)return await self.arun(tool_input, **kwargs)
  • 充当执行工具逻辑的入口点
  • 准备输入参数,并在内部调用run()arun()

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com