您的位置:首页 > 新闻 > 热点要闻 > 微信公众号运营方案_ppt模板下载后怎么导入_seo技术优化_seo快速排名工具

微信公众号运营方案_ppt模板下载后怎么导入_seo技术优化_seo快速排名工具

2025/5/7 21:18:46 来源:https://blog.csdn.net/m0_52592798/article/details/143379591  浏览:    关键词:微信公众号运营方案_ppt模板下载后怎么导入_seo技术优化_seo快速排名工具
微信公众号运营方案_ppt模板下载后怎么导入_seo技术优化_seo快速排名工具

文章目录

  • 一、model介绍
  • 二、Module
  • 三、张量
    • 3.1 定义
    • 3.2 用法

一、model介绍

容器                                          Containers
卷积层                                        Convolution Layers
池化层                                        Pooling layers
填白层                                        Padding Layers
非线性激活(加权和,非线性)                  Non-linear Activations (weighted sum, nonlinearity)
非线性激活(其他)                            Non-linear Activations (other)
正则化层                                      Normalization Layers
复发性层                                      Recurrent Layers
变压器层                                      Transformer Layers
线性层                                        Linear Layers
辍学层                                        Dropout Layers
稀疏层                                        Sparse Layers
距离函数                                      Distance Functions
损失函数                                      Loss Functions
视觉层                                        Vision Layers
洗牌层(打乱)                                Shuffle Layers
数据并行层                                    DataParallel Layers (multi-GPU, distributed)
量化的功能                                    Quantized Functions
惰性模块初始化                                Lazy Modules Initialization

以后一一介绍

二、Module

class Model(nn.Module):def __init__(self) -> None:super().__init__()self.conv1 = nn.Conv2d(1, 20, 5)self.conv2 = nn.Conv2d(20, 20, 5)def forward(self, x):x = F.relu(self.conv1(x))return F.relu(self.conv2(x))

定义自己的类(神经网络),自己继承了Module的父类,但是有想进行修改,则定义了__init__和forward,
之后就是调用父类的初始化函数。forward(前向传播),backward(反向传播)。

x魏输入,F.relu(self.conv1(x)),先经过一次卷积conv1,之后经过一次非线性relu
由于返回时return F.relu(self.conv2(x))所有总共两组。
示例

import torch
from torch import nn
class Tudui(nn.Module):def __init__(self):super().__init__()def forward(self,input):output = input + 1return output
tudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)

三、张量

3.1 定义

数学中
标量:单独的数
向量:一行或一列数组
矩阵:二维数组
张量:维度超过2的数组

PyTorch中
张量(Tensor)是一种数据结构,可以是一个标量、一个向量、一个矩阵,甚至是更高维度的数组。

所以PyTorch中的张量(Tensor)和Numpy中的**数组(ndarray)**非常相似。

3.2 用法

一、张量的数据类型、默认类型、类型转换。
二、张量的生成:torch.tensor()、torch.Tensor()、张量和NumPy数据互相转换、随机数生成张量、函数生成等。
三、张量操作:改变张量的形状、获取张量中的元素、拼接和拆分等。
四、张量计算:比较大小、基本运算、统计相关计算等。

文章链接:【PyTorch】张量超详细介绍(数据类型、生成、操作、计算)

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com